spss、R语言、Python数据分析系列(3):R语言从外部读取数据

简介: spss、R语言、Python数据分析系列(3):R语言从外部读取数据

R语言作为一个专业的统计软件,具有很多从外部导入数据的方法,

下面具体学习总结和分享一下:

 

 1、读取txt文件

 

 data=read.table(文件,--------);后面有很多可选择的参数,就不一一解释,大家可以使用help(read.table)查看相应的帮助


data=read.table("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-02a.txt")
data
 V1 V2 V3   V4 V5
1  6  0 10 1.46 38
2 15  0 10 1.48 39
3  4  0 11 1.52 42
4  3  0 11 1.55 44
5 11  1 11 1.55 55
6 18  1 11 1.56 48


2、读取csv文件


同理,data=read.csv(文件,------------);后面是可选参数


data1=read.csv("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.csv")
data1
   X2008.1.7 X11.97 X12.14 X11.7 X11.9 X11.9.1
1   2008/1/8  11.90  12.75 11.80 12.21   12.21
2   2008/1/9  12.10  13.03 12.05 12.94   12.94
3  2008/1/10  13.04  13.32 12.71 13.10   13.10
4  2008/1/11  13.15  14.15 13.15 13.93   13.93
5  2008/1/14  13.96  14.45 13.60 14.03   14.03
6  2008/1/15  14.00  14.18 13.70 13.97   13.97
7  2008/1/16  13.80  13.85 13.11 13.32   13.32
8  2008/1/18  13.27  13.73 12.20 12.80   12.80
9  2008/1/21  12.75  13.34 12.35 13.22   13.22
10 2008/1/22  13.08  13.20 11.90 11.90   11.90
11 2008/1/23  11.00  11.40 10.71 10.71   10.71
12 2008/1/24  11.30  11.47 11.00 11.17   11.17
13  2008/1/7  11.97  12.14 11.70 11.90   11.90
14  2008/1/8  11.90  12.75 11.80 12.21   12.21
15  2008/1/9  12.10  13.03 12.05 12.94   12.94
16 2008/1/10  13.04  13.32 12.71 13.10   13.10
17 2008/1/11  13.15  14.15 13.15 13.93   13.93
18 2008/1/14  13.96  14.45 13.60 14.03   14.03
19 2008/1/15  14.00  14.18 13.70 13.97   13.97
20 2008/1/16  13.80  13.85 13.11 13.32   13.32
21 2008/1/18  13.27  13.73 12.20 12.80   12.80
22 2008/1/21  12.75  13.34 12.35 13.22   13.22
23 2008/1/22  13.08  13.20 11.90 11.90   11.90
24 2008/1/23  11.00  11.40 10.71 10.71   10.71
25 2008/1/24  11.30  11.47 11.00 11.17   11.17
26  2008/1/7  11.97  12.14 11.70 11.90   11.90
27  2008/1/8  11.90  12.75 11.80 12.21   12.21
28  2008/1/9  12.10  13.03 12.05 12.94   12.94
29 2008/1/10  13.04  13.32 12.71 13.10   13.10
30 2008/1/11  13.15  14.15 13.15 13.93   13.93
31 2008/1/14  13.96  14.45 13.60 14.03   14.03
32 2008/1/15  14.00  14.18 13.70 13.97   13.97
33 2008/1/16  13.80  13.85 13.11 13.32   13.32
34 2008/1/18  13.27  13.73 12.20 12.80   12.80
35 2008/1/21  12.75  13.34 12.35 13.22   13.22
36 2008/1/22  13.08  13.20 11.90 11.90   11.90
37 2008/1/23  11.00  11.40 10.71 10.71   10.71
38 2008/1/24  11.30  11.47 11.00 11.17   11.17
39  2008/1/7  11.97  12.14 11.70 11.90   11.90
40  2008/1/8  11.90  12.75 11.80 12.21   12.21
41  2008/1/9  12.10  13.03 12.05 12.94   12.94
42 2008/1/10  13.04  13.32 12.71 13.10   13.10
43 2008/1/11  13.15  14.15 13.15 13.93   13.93
44 2008/1/14  13.96  14.45 13.60 14.03   14.03
45 2008/1/15  14.00  14.18 13.70 13.97   13.97
46 2008/1/16  13.80  13.85 13.11 13.32   13.32
47 2008/1/18  13.27  13.73 12.20 12.80   12.80
48 2008/1/21  12.75  13.34 12.35 13.22   13.22
49 2008/1/22  13.08  13.20 11.90 11.90   11.90
50 2008/1/23  11.00  11.40 10.71 10.71   10.71
51 2008/1/24  11.30  11.47 11.00 11.17   11.17
52  2008/1/7  11.97  12.14 11.70 11.90   11.90
53  2008/1/8  11.90  12.75 11.80 12.21   12.21
54  2008/1/9  12.10  13.03 12.05 12.94   12.94
55 2008/1/10  13.04  13.32 12.71 13.10   13.10
56 2008/1/11  13.15  14.15 13.15 13.93   13.93
57 2008/1/14  13.96  14.45 13.60 14.03   14.03
58 2008/1/15  14.00  14.18 13.70 13.97   13.97
59 2008/1/16  13.80  13.85 13.11 13.32   13.32
60 2008/1/18  13.27  13.73 12.20 12.80   12.80
61 2008/1/21  12.75  13.34 12.35 13.22   13.22
62 2008/1/22  13.08  13.20 11.90 11.90   11.90
63 2008/1/23  11.00  11.40 10.71 10.71   10.71
64 2008/1/24  11.30  11.47 11.00 11.17   11.17
65  2008/1/7  11.97  12.14 11.70 11.90   11.90
66  2008/1/8  11.90  12.75 11.80 12.21   12.21
67  2008/1/9  12.10  13.03 12.05 12.94   12.94
68 2008/1/10  13.04  13.32 12.71 13.10   13.10
69 2008/1/11  13.15  14.15 13.15 13.93   13.93
70 2008/1/14  13.96  14.45 13.60 14.03   14.03
71 2008/1/15  14.00  14.18 13.70 13.97   13.97
72 2008/1/16  13.80  13.85 13.11 13.32   13.32
73 2008/1/18  13.27  13.73 12.20 12.80   12.80
74 2008/1/21  12.75  13.34 12.35 13.22   13.22
75 2008/1/22  13.08  13.20 11.90 11.90   11.90
76 2008/1/23  11.00  11.40 10.71 10.71   10.71
77 2008/1/24  11.30  11.47 11.00 11.17   11.17


3、读取excel文件(xls)

data2=odbcConnectExcel("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls")
#只能使用32位的windows系统;Error in 
data2=odbcConnectExcel2007("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls")
data2
df=sqlTables(data2)
table_test <- sqlFetch(data2, df$TABLE_NAME[1])
table_test
 2008 1 7 星期一 11#97 12#14  11#7  11#9 11#91
1       2008-01-08 11.90 12.75 11.80 12.21 12.21
2       2008-01-09 12.10 13.03 12.05 12.94 12.94
3       2008-01-10 13.04 13.32 12.71 13.10 13.10
4       2008-01-11 13.15 14.15 13.15 13.93 13.93
5       2008-01-14 13.96 14.45 13.60 14.03 14.03
6       2008-01-15 14.00 14.18 13.70 13.97 13.97
7       2008-01-16 13.80 13.85 13.11 13.32 13.32
8       2008-01-18 13.27 13.73 12.20 12.80 12.80
9       2008-01-21 12.75 13.34 12.35 13.22 13.22
10      2008-01-22 13.08 13.20 11.90 11.90 11.90
11      2008-01-23 11.00 11.40 10.71 10.71 10.71
12      2008-01-24 11.30 11.47 11.00 11.17 11.17
13      2008-01-07 11.97 12.14 11.70 11.90 11.90
14      2008-01-08 11.90 12.75 11.80 12.21 12.21
15      2008-01-09 12.10 13.03 12.05 12.94 12.94
16      2008-01-10 13.04 13.32 12.71 13.10 13.10
17      2008-01-11 13.15 14.15 13.15 13.93 13.93
18      2008-01-14 13.96 14.45 13.60 14.03 14.03
19      2008-01-15 14.00 14.18 13.70 13.97 13.97
20      2008-01-16 13.80 13.85 13.11 13.32 13.32
21      2008-01-18 13.27 13.73 12.20 12.80 12.80
22      2008-01-21 12.75 13.34 12.35 13.22 13.22
23      2008-01-22 13.08 13.20 11.90 11.90 11.90
24      2008-01-23 11.00 11.40 10.71 10.71 10.71
25      2008-01-24 11.30 11.47 11.00 11.17 11.17
26      2008-01-07 11.97 12.14 11.70 11.90 11.90
27      2008-01-08 11.90 12.75 11.80 12.21 12.21
28      2008-01-09 12.10 13.03 12.05 12.94 12.94
29      2008-01-10 13.04 13.32 12.71 13.10 13.10
30      2008-01-11 13.15 14.15 13.15 13.93 13.93
31      2008-01-14 13.96 14.45 13.60 14.03 14.03
32      2008-01-15 14.00 14.18 13.70 13.97 13.97
33      2008-01-16 13.80 13.85 13.11 13.32 13.32
34      2008-01-18 13.27 13.73 12.20 12.80 12.80
35      2008-01-21 12.75 13.34 12.35 13.22 13.22
36      2008-01-22 13.08 13.20 11.90 11.90 11.90
37      2008-01-23 11.00 11.40 10.71 10.71 10.71
38      2008-01-24 11.30 11.47 11.00 11.17 11.17
39      2008-01-07 11.97 12.14 11.70 11.90 11.90
40      2008-01-08 11.90 12.75 11.80 12.21 12.21
41      2008-01-09 12.10 13.03 12.05 12.94 12.94
42      2008-01-10 13.04 13.32 12.71 13.10 13.10
43      2008-01-11 13.15 14.15 13.15 13.93 13.93
44      2008-01-14 13.96 14.45 13.60 14.03 14.03
45      2008-01-15 14.00 14.18 13.70 13.97 13.97
46      2008-01-16 13.80 13.85 13.11 13.32 13.32
47      2008-01-18 13.27 13.73 12.20 12.80 12.80
48      2008-01-21 12.75 13.34 12.35 13.22 13.22
49      2008-01-22 13.08 13.20 11.90 11.90 11.90
50      2008-01-23 11.00 11.40 10.71 10.71 10.71
51      2008-01-24 11.30 11.47 11.00 11.17 11.17
52      2008-01-07 11.97 12.14 11.70 11.90 11.90
53      2008-01-08 11.90 12.75 11.80 12.21 12.21
54      2008-01-09 12.10 13.03 12.05 12.94 12.94
55      2008-01-10 13.04 13.32 12.71 13.10 13.10
56      2008-01-11 13.15 14.15 13.15 13.93 13.93
57      2008-01-14 13.96 14.45 13.60 14.03 14.03
58      2008-01-15 14.00 14.18 13.70 13.97 13.97
59      2008-01-16 13.80 13.85 13.11 13.32 13.32
60      2008-01-18 13.27 13.73 12.20 12.80 12.80
61      2008-01-21 12.75 13.34 12.35 13.22 13.22
62      2008-01-22 13.08 13.20 11.90 11.90 11.90
63      2008-01-23 11.00 11.40 10.71 10.71 10.71
64      2008-01-24 11.30 11.47 11.00 11.17 11.17
65      2008-01-07 11.97 12.14 11.70 11.90 11.90
66      2008-01-08 11.90 12.75 11.80 12.21 12.21
67      2008-01-09 12.10 13.03 12.05 12.94 12.94
68      2008-01-10 13.04 13.32 12.71 13.10 13.10
69      2008-01-11 13.15 14.15 13.15 13.93 13.93
70      2008-01-14 13.96 14.45 13.60 14.03 14.03
71      2008-01-15 14.00 14.18 13.70 13.97 13.97
72      2008-01-16 13.80 13.85 13.11 13.32 13.32
73      2008-01-18 13.27 13.73 12.20 12.80 12.80
74      2008-01-21 12.75 13.34 12.35 13.22 13.22
75      2008-01-22 13.08 13.20 11.90 11.90 11.90
76      2008-01-23 11.00 11.40 10.71 10.71 10.71
77      2008-01-24 11.30 11.47 11.00 11.17 11.17



  4、读取excel文件(xlsx)  


  使用xlsx包  

library('xlsx')
data3=read.xlsx("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls",1)
data3
X39454 X11.97 X12.14 X11.7 X11.9 X11.9.1
1  2008-01-08  11.90  12.75 11.80 12.21   12.21
2  2008-01-09  12.10  13.03 12.05 12.94   12.94
3  2008-01-10  13.04  13.32 12.71 13.10   13.10
4  2008-01-11  13.15  14.15 13.15 13.93   13.93
5  2008-01-14  13.96  14.45 13.60 14.03   14.03
6  2008-01-15  14.00  14.18 13.70 13.97   13.97
7  2008-01-16  13.80  13.85 13.11 13.32   13.32
8  2008-01-18  13.27  13.73 12.20 12.80   12.80
9  2008-01-21  12.75  13.34 12.35 13.22   13.22
10 2008-01-22  13.08  13.20 11.90 11.90   11.90
11 2008-01-23  11.00  11.40 10.71 10.71   10.71
12 2008-01-24  11.30  11.47 11.00 11.17   11.17
13 2008-01-07  11.97  12.14 11.70 11.90   11.90
14 2008-01-08  11.90  12.75 11.80 12.21   12.21
15 2008-01-09  12.10  13.03 12.05 12.94   12.94
16 2008-01-10  13.04  13.32 12.71 13.10   13.10
17 2008-01-11  13.15  14.15 13.15 13.93   13.93
18 2008-01-14  13.96  14.45 13.60 14.03   14.03
19 2008-01-15  14.00  14.18 13.70 13.97   13.97
20 2008-01-16  13.80  13.85 13.11 13.32   13.32
21 2008-01-18  13.27  13.73 12.20 12.80   12.80
22 2008-01-21  12.75  13.34 12.35 13.22   13.22
23 2008-01-22  13.08  13.20 11.90 11.90   11.90
24 2008-01-23  11.00  11.40 10.71 10.71   10.71
25 2008-01-24  11.30  11.47 11.00 11.17   11.17
26 2008-01-07  11.97  12.14 11.70 11.90   11.90
27 2008-01-08  11.90  12.75 11.80 12.21   12.21
28 2008-01-09  12.10  13.03 12.05 12.94   12.94
29 2008-01-10  13.04  13.32 12.71 13.10   13.10
30 2008-01-11  13.15  14.15 13.15 13.93   13.93
31 2008-01-14  13.96  14.45 13.60 14.03   14.03
32 2008-01-15  14.00  14.18 13.70 13.97   13.97
33 2008-01-16  13.80  13.85 13.11 13.32   13.32
34 2008-01-18  13.27  13.73 12.20 12.80   12.80
35 2008-01-21  12.75  13.34 12.35 13.22   13.22
36 2008-01-22  13.08  13.20 11.90 11.90   11.90
37 2008-01-23  11.00  11.40 10.71 10.71   10.71
38 2008-01-24  11.30  11.47 11.00 11.17   11.17
39 2008-01-07  11.97  12.14 11.70 11.90   11.90
40 2008-01-08  11.90  12.75 11.80 12.21   12.21
41 2008-01-09  12.10  13.03 12.05 12.94   12.94
42 2008-01-10  13.04  13.32 12.71 13.10   13.10
43 2008-01-11  13.15  14.15 13.15 13.93   13.93
44 2008-01-14  13.96  14.45 13.60 14.03   14.03
45 2008-01-15  14.00  14.18 13.70 13.97   13.97
46 2008-01-16  13.80  13.85 13.11 13.32   13.32
47 2008-01-18  13.27  13.73 12.20 12.80   12.80
48 2008-01-21  12.75  13.34 12.35 13.22   13.22
49 2008-01-22  13.08  13.20 11.90 11.90   11.90
50 2008-01-23  11.00  11.40 10.71 10.71   10.71
51 2008-01-24  11.30  11.47 11.00 11.17   11.17
52 2008-01-07  11.97  12.14 11.70 11.90   11.90
53 2008-01-08  11.90  12.75 11.80 12.21   12.21
54 2008-01-09  12.10  13.03 12.05 12.94   12.94
55 2008-01-10  13.04  13.32 12.71 13.10   13.10
56 2008-01-11  13.15  14.15 13.15 13.93   13.93
57 2008-01-14  13.96  14.45 13.60 14.03   14.03
58 2008-01-15  14.00  14.18 13.70 13.97   13.97
59 2008-01-16  13.80  13.85 13.11 13.32   13.32
60 2008-01-18  13.27  13.73 12.20 12.80   12.80
61 2008-01-21  12.75  13.34 12.35 13.22   13.22
62 2008-01-22  13.08  13.20 11.90 11.90   11.90
63 2008-01-23  11.00  11.40 10.71 10.71   10.71
64 2008-01-24  11.30  11.47 11.00 11.17   11.17
65 2008-01-07  11.97  12.14 11.70 11.90   11.90
66 2008-01-08  11.90  12.75 11.80 12.21   12.21
67 2008-01-09  12.10  13.03 12.05 12.94   12.94
68 2008-01-10  13.04  13.32 12.71 13.10   13.10
69 2008-01-11  13.15  14.15 13.15 13.93   13.93
70 2008-01-14  13.96  14.45 13.60 14.03   14.03
71 2008-01-15  14.00  14.18 13.70 13.97   13.97
72 2008-01-16  13.80  13.85 13.11 13.32   13.32
73 2008-01-18  13.27  13.73 12.20 12.80   12.80
74 2008-01-21  12.75  13.34 12.35 13.22   13.22
75 2008-01-22  13.08  13.20 11.90 11.90   11.90
76 2008-01-23  11.00  11.40 10.71 10.71   10.71
77 2008-01-24  11.30  11.47 11.00 11.17   11.17


使用openxlsx包

data4=read.xlsx("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xlsx",1)
data4
39454 11.97 12.14  11.7  11.9  11.9
1  39455 11.90 12.75 11.80 12.21 12.21
2  39456 12.10 13.03 12.05 12.94 12.94
3  39457 13.04 13.32 12.71 13.10 13.10
4  39458 13.15 14.15 13.15 13.93 13.93
5  39461 13.96 14.45 13.60 14.03 14.03
6  39462 14.00 14.18 13.70 13.97 13.97
7  39463 13.80 13.85 13.11 13.32 13.32
8  39465 13.27 13.73 12.20 12.80 12.80
9  39468 12.75 13.34 12.35 13.22 13.22
10 39469 13.08 13.20 11.90 11.90 11.90
11 39470 11.00 11.40 10.71 10.71 10.71
12 39471 11.30 11.47 11.00 11.17 11.17
13 39454 11.97 12.14 11.70 11.90 11.90
14 39455 11.90 12.75 11.80 12.21 12.21
15 39456 12.10 13.03 12.05 12.94 12.94
16 39457 13.04 13.32 12.71 13.10 13.10
17 39458 13.15 14.15 13.15 13.93 13.93
18 39461 13.96 14.45 13.60 14.03 14.03
19 39462 14.00 14.18 13.70 13.97 13.97
20 39463 13.80 13.85 13.11 13.32 13.32
21 39465 13.27 13.73 12.20 12.80 12.80
22 39468 12.75 13.34 12.35 13.22 13.22
23 39469 13.08 13.20 11.90 11.90 11.90
24 39470 11.00 11.40 10.71 10.71 10.71
25 39471 11.30 11.47 11.00 11.17 11.17
26 39454 11.97 12.14 11.70 11.90 11.90
27 39455 11.90 12.75 11.80 12.21 12.21
28 39456 12.10 13.03 12.05 12.94 12.94
29 39457 13.04 13.32 12.71 13.10 13.10
30 39458 13.15 14.15 13.15 13.93 13.93
31 39461 13.96 14.45 13.60 14.03 14.03
32 39462 14.00 14.18 13.70 13.97 13.97
33 39463 13.80 13.85 13.11 13.32 13.32
34 39465 13.27 13.73 12.20 12.80 12.80
35 39468 12.75 13.34 12.35 13.22 13.22
36 39469 13.08 13.20 11.90 11.90 11.90
37 39470 11.00 11.40 10.71 10.71 10.71
38 39471 11.30 11.47 11.00 11.17 11.17
39 39454 11.97 12.14 11.70 11.90 11.90
40 39455 11.90 12.75 11.80 12.21 12.21
41 39456 12.10 13.03 12.05 12.94 12.94
42 39457 13.04 13.32 12.71 13.10 13.10
43 39458 13.15 14.15 13.15 13.93 13.93
44 39461 13.96 14.45 13.60 14.03 14.03
45 39462 14.00 14.18 13.70 13.97 13.97
46 39463 13.80 13.85 13.11 13.32 13.32
47 39465 13.27 13.73 12.20 12.80 12.80
48 39468 12.75 13.34 12.35 13.22 13.22
49 39469 13.08 13.20 11.90 11.90 11.90
50 39470 11.00 11.40 10.71 10.71 10.71
51 39471 11.30 11.47 11.00 11.17 11.17
52 39454 11.97 12.14 11.70 11.90 11.90
53 39455 11.90 12.75 11.80 12.21 12.21
54 39456 12.10 13.03 12.05 12.94 12.94
55 39457 13.04 13.32 12.71 13.10 13.10
56 39458 13.15 14.15 13.15 13.93 13.93
57 39461 13.96 14.45 13.60 14.03 14.03
58 39462 14.00 14.18 13.70 13.97 13.97
59 39463 13.80 13.85 13.11 13.32 13.32
60 39465 13.27 13.73 12.20 12.80 12.80
61 39468 12.75 13.34 12.35 13.22 13.22
62 39469 13.08 13.20 11.90 11.90 11.90
63 39470 11.00 11.40 10.71 10.71 10.71
64 39471 11.30 11.47 11.00 11.17 11.17
65 39454 11.97 12.14 11.70 11.90 11.90
66 39455 11.90 12.75 11.80 12.21 12.21
67 39456 12.10 13.03 12.05 12.94 12.94
68 39457 13.04 13.32 12.71 13.10 13.10
69 39458 13.15 14.15 13.15 13.93 13.93
70 39461 13.96 14.45 13.60 14.03 14.03
71 39462 14.00 14.18 13.70 13.97 13.97
72 39463 13.80 13.85 13.11 13.32 13.32
73 39465 13.27 13.73 12.20 12.80 12.80
74 39468 12.75 13.34 12.35 13.22 13.22
75 39469 13.08 13.20 11.90 11.90 11.90
76 39470 11.00 11.40 10.71 10.71 10.71
77 39471 11.30 11.47 11.00 11.17 11.17


5、读取spss数据

library(foreign)  
data5=read.spss("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-01.sav")
data5


注:还有很多,没有一一列举。掌握住几个方法就可以了。

目录
相关文章
|
2月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
186 1
|
2月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
288 1
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
191 3
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
301 102
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
266 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
197 82
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
2月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
167 4
|
3月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。

推荐镜像

更多