np.linspace、 np.arange、np.logspace三个函数的对比分析--python学习笔记24

简介: np.linspace、 np.arange、np.logspace三个函数的对比分析--python学习笔记24

英语好的童鞋们,直接看后面的英文官方解释,我就不班门弄斧了。英文不好的,可以看下我的中文解释。


首先:

np.linspace
np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

参数解释:start,stop是开始,结束的数字,num是生成多少个数字,默认50个;endpoint是最后一个stop数字是否包含进去,默认包含;retstep,是两个数字间的间距,默认不显示;dtype默认。

小栗子:对比分析


import numpy as np
x1=np.linspace(1,100,endpoint=True,retstep=True);
x2=np.linspace(1,100,num=100,endpoint=True,retstep=True);
x3=np.linspace(1,100,,endpoint=False,retstep=True);
x4=np.linspace(1,100,endpoint=True,retstep=False);


其次,np.logspace,跟np.linspace很相似,多了一个base

np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

参数解释:base意思是取对数的时候log的下标;retstep这个参数没有了;

最后,np.arange

这个是比较常用的:


eg:

np.arange(3)
array([0, 1, 2])
np.arange(3.0)
array([ 0.,  1.,  2.])
np.arange(3,7)
array([3, 4, 5, 6])
np.arange(3,7,2)
array([3, 5])
'''
Signature: np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Docstring:
Return evenly spaced numbers over a specified interval.
Returns `num` evenly spaced samples, calculated over the
interval [`start`, `stop`].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : scalar
    The starting value of the sequence.
stop : scalar
    The end value of the sequence, unless `endpoint` is set to False.
    In that case, the sequence consists of all but the last of ``num + 1``
    evenly spaced samples, so that `stop` is excluded.  Note that the step
    size changes when `endpoint` is False.
num : int, optional
    Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
    If True, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
retstep : bool, optional
    If True, return (`samples`, `step`), where `step` is the spacing
    between samples.
dtype : dtype, optional
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
    .. versionadded:: 1.9.0
Returns
-------
samples : ndarray
    There are `num` equally spaced samples in the closed interval
    ``[start, stop]`` or the half-open interval ``[start, stop)``
    (depending on whether `endpoint` is True or False).
step : float
    Only returned if `retstep` is True
    Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
         number of samples).
logspace : Samples uniformly distributed in log space.
Examples
--------
np.linspace(2.0, 3.0, num=5)
    array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])
np.linspace(2.0, 3.0, num=5, endpoint=False)
    array([ 2. ,  2.2,  2.4,  2.6,  2.8])
np.linspace(2.0, 3.0, num=5, retstep=True)
    (array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
Graphical illustration:
import matplotlib.pyplot as plt
N = 8
y = np.zeros(N)
x1 = np.linspace(0, 10, N, endpoint=True)
x2 = np.linspace(0, 10, N, endpoint=False)
plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.ylim([-0.5, 1])
(-0.5, 1)
plt.show()
'''
'''
'''
'''
Signature: np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
Docstring:
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).
Parameters
----------
start : float
    ``base ** start`` is the starting value of the sequence.
stop : float
    ``base ** stop`` is the final value of the sequence, unless `endpoint`
    is False.  In that case, ``num + 1`` values are spaced over the
    interval in log-space, of which all but the last (a sequence of
    length ``num``) are returned.
num : integer, optional
    Number of samples to generate.  Default is 50.
endpoint : boolean, optional
    If true, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
base : float, optional
    The base of the log space. The step size between the elements in
    ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
    Default is 10.0.
dtype : dtype
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
Returns
-------
samples : ndarray
    `num` samples, equally spaced on a log scale.
See Also
--------
arange : Similar to linspace, with the step size specified instead of the
         number of samples. Note that, when used with a float endpoint, the
         endpoint may or may not be included.
linspace : Similar to logspace, but with the samples uniformly distributed
           in linear space, instead of log space.
Notes
-----
Logspace is equivalent to the code
y = np.linspace(start, stop, num=num, endpoint=endpoint)
# doctest: +SKIP
power(base, y).astype(dtype)
# doctest: +SKIP
Examples
--------
np.logspace(2.0, 3.0, num=4)
    array([  100.        ,   215.443469  ,   464.15888336,  1000.        ])
np.logspace(2.0, 3.0, num=4, endpoint=False)
    array([ 100.        ,  177.827941  ,  316.22776602,  562.34132519])
np.logspace(2.0, 3.0, num=4, base=2.0)
    array([ 4.        ,  5.0396842 ,  6.34960421,  8.        ])
Graphical illustration:
import matplotlib.pyplot as plt
N = 10
x1 = np.logspace(0.1, 1, N, endpoint=True)
x2 = np.logspace(0.1, 1, N, endpoint=False)
y = np.zeros(N)
plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.ylim([-0.5, 1])
(-0.5, 1)
plt.show()
File:      c:\program files (x86)\python35-32\lib\site-packages\numpy\core\function_base.py
Type:      function
'''
'''
Docstring:
arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, the results will often not
be consistent.  It is better to use ``linspace`` for these cases.
Parameters
----------
start : number, optional
    Start of interval.  The interval includes this value.  The default
    start value is 0.
stop : number
    End of interval.  The interval does not include this value, except
    in some cases where `step` is not an integer and floating point
    round-off affects the length of `out`.
step : number, optional
    Spacing between values.  For any output `out`, this is the distance
    between two adjacent values, ``out[i+1] - out[i]``.  The default
    step size is 1.  If `step` is specified, `start` must also be given.
dtype : dtype
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
Returns
-------
arange : ndarray
    Array of evenly spaced values.
    For floating point arguments, the length of the result is
    ``ceil((stop - start)/step)``.  Because of floating point overflow,
    this rule may result in the last element of `out` being greater
    than `stop`.
See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Arrays of evenly spaced numbers in N-dimensions.
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
Examples
--------
np.arange(3)
array([0, 1, 2])
np.arange(3.0)
array([ 0.,  1.,  2.])
np.arange(3,7)
array([3, 4, 5, 6])
np.arange(3,7,2)
array([3, 5])
'''




目录
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
186 1
|
2月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
288 1
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
167 0
|
3月前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
275 101
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
3月前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。
|
3月前
|
缓存 供应链 芯片
电子元件类商品 item_get - 商品详情接口深度分析及 Python 实现
电子元件商品接口需精准返回型号参数、规格属性、认证及库存等专业数据,支持供应链管理与采购决策。本文详解其接口特性、数据结构与Python实现方案。

推荐镜像

更多