threading库:Python线程锁与释放锁(一)

简介: threading库:Python线程锁与释放锁(一)

控制资源访问


前文提到threading库在多线程时,对同一资源的访问容易导致破坏与丢失数据。为了保证安全的访问一个资源对象,我们需要创建锁。


示例如下:

import threading
import time
class AddThread():
    def __init__(self, start=0):
        self.lock = threading.Lock()
        self.value = start
    def increment(self):
        print("Wait Lock")
        self.lock.acquire()
        try:
            print("Acquire Lock")
            self.value += 1
            print(self.value)
        finally:
            self.lock.release()
def worker(a):
    time.sleep(1)
    a.increment()
addThread = AddThread()
for i in range(3):
    t = threading.Thread(target=worker, args=(addThread,))
    t.start()


运行之后,效果如下:


acquire()会通过锁进行阻塞其他线程执行中间段,release()释放锁,可以看到,基本都是获得锁之后才执行。避免了多个线程同时改变其资源对象,不会造成混乱。


判断是否有另一个线程请求锁


要确定是否有另一个线程请求锁而不影响当前的线程,可以设置acquire()的参数blocking=False。


示例如下:

import threading
import time
def worker2(lock):
    print("worker2 Wait Lock")
    while True:
        lock.acquire()
        try:
            print("Holding")
            time.sleep(0.5)
        finally:
            print("not Holding")
            lock.release()
        time.sleep(0.5)
def worker1(lock):
    print("worker1 Wait Lock")
    num_acquire = 0
    value = 0
    while num_acquire < 3:
        time.sleep(0.5)
        have_it = lock.acquire(blocking=False)
        try:
            value += 1
            print(value)
            print("Acquire Lock")
            if have_it:
                num_acquire += 1
        finally:
            print("release Lock")
            if have_it:
                lock.release()
lock = threading.Lock()
word2Thread = threading.Thread(
    target=worker2,
    name='work2',
    args=(lock,)
)
word2Thread.start()
word1Thread = threading.Thread(
    target=worker1,
    name='work1',
    args=(lock,)
)
word1Thread.start()


运行之后,效果如下:


这里,我们需要迭代很多次,work1才能获取3次锁。但是尝试了很8次。


with lock


前文,我们通过lock.acquire()与lock.release()实现了锁的获取与释放,但其实我们Python还给我们提供了一个更简单的语法,通过with lock来获取与释放锁。


示例如下:

import threading
import time
class AddThread():
    def __init__(self, start=0):
        self.lock = threading.Lock()
        self.value = start
    def increment(self):
        print("Wait Lock")
        with self.lock:
            print("lock acquire")
            self.value += 1
            print(self.value)
        print("lock release")
def worker(a):
    time.sleep(1)
    a.increment()
addThread = AddThread()
for i in range(3):
    t = threading.Thread(target=worker, args=(addThread,))
    t.start()


这里,我们只是将最上面的例子改变了一下。效果如下:


需要注意的是,正常的Lock对象不能请求多次,即使是由同一个线程请求也不例外。如果同一个调用链中的多个函数访问一个锁,则会发生意外。如果期望在同一个线程的不同代码需要重新获得锁,那么这种情况下使用RLock。

相关文章
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
负载均衡 算法 安全
基于Reactor模式的高性能网络库之线程池组件设计篇
EventLoopThreadPool 是 Reactor 模式中实现“一个主线程 + 多个工作线程”的关键组件,用于高效管理多个 EventLoop 并在多核 CPU 上分担高并发 I/O 压力。通过封装 Thread 类和 EventLoopThread,实现线程创建、管理和事件循环的调度,形成线程池结构。每个 EventLoopThread 管理一个子线程与对应的 EventLoop(subloop),主线程(base loop)通过负载均衡算法将任务派发至各 subloop,从而提升系统性能与并发处理能力。
117 3
|
2月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
275 51
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
223 0
|
2月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍如何利用Python的clipboard-monitor库实现剪贴板监控系统,涵盖文本与图片的实时监听、防重复存储、GUI界面开发及数据加密等核心技术,适用于安全审计与自动化办公场景。
84 0
|
3月前
|
JSON 数据格式 Python
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
89 10
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
211 33
|
2月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
84 1

推荐镜像

更多