【智能算法】SMO蜘蛛猴优化算法求解无约束多元函数最值(Java代码实现)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【智能算法】SMO蜘蛛猴优化算法求解无约束多元函数最值(Java代码实现)

@[toc]


前言

本文以求解二元函数最小值为例,如果需要求解多元函数,只需要修改以下变量即可:

  • varNum:变量维度数
  • ub和lb:变量的上下界
  • vMaxArr:每个维度的搜索速度限制

优化目标

目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60

优化结果

变量取值为:[8.000000025138169, 6.000000008671988]
最优解为:7.999999999999986

迭代过程可视化

注意,下图可没有加速处理!SMO算法的收敛速度就是那么快!
在SMO中,局部领导者阶段和全局领导者阶段有助于利用搜索空间,而探索则通过局部领导者决策阶段和全局领导者决策阶段完成。SMO性能分析表明,SMO在可靠性、有效性和精度方面超过了ABC、DE和PSO。
在这里插入图片描述

Java代码

import java.util.*;

/**
 * @Author:WSKH
 * @ClassName:SMO_Solver
 * @ClassType:
 * @Description:
 * @Date:2022/6/8/13:42
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class SMO_Solver {

    // 蜘蛛猴对象
    class SpiderMonkey {
        // 当前蜘蛛猴坐标(自变量数组)
        double[] curVars;
        // 当前自变量对应的目标函数值
        double curObjValue;
        // 适应度(解决最小化问题,所以适应度为目标函数值的倒数)
        double fit;
        // 全参数构造
        public SpiderMonkey(double[] curVars, double curObjValue, double fit) {
            this.curVars = curVars;
            this.curObjValue = curObjValue;
            this.fit = fit;
        }
    }

    // 算法参数
    // 蜘蛛猴群
    List<SpiderMonkey[]> spiderMonkeyList = new ArrayList<>();
    // 局部领导者
    List<SpiderMonkey> localLeaderList = new ArrayList<>();
    // 最好的蜘蛛猴(全局领导者)
    SpiderMonkey bestSpiderMonkey;
    // 随机数对象
    Random random = new Random();
    // 最大迭代次数
    int maxGen = 500;
    // 蜘蛛猴数量
    int spiderMonkeyNum = 300;
    // 局部搜索次数(一般等于蜘蛛猴数量)
    int localSearchCount = spiderMonkeyNum;
    // 局部领导者决策阶段的更新几率
    double LLDP_PR = 0.1;
    // 局部领导者阶段的更新几率
    double LLP_PR = 0.8;
    // 变量维度数
    int varNum = 2;
    // 最大组数(一般要至少保证每组里有10个蜘蛛猴)
    int maxgroupNum = spiderMonkeyNum/10 ;
    // 变量的上下界
    double[] ub = new double[]{1000, 1000};
    double[] lb = new double[]{-1000, -1000};
    // 局部计数器
    int[] localLimitCount = new int[]{0};
    // 停止条件
    int limitCnt = 50;
    // 全局计数器
    int globalLimitCount;
    // 记录迭代过程
    public double[][][] positionArr;
    // 记录迭代器的行数
    int curC = 0;
    // 是否开启贪心机制(只接受比当前解好的解)
    boolean greedy = true;

    // 求解主函数
    public void solve() {
        // 初始化蜘蛛猴种群
        initSpiderMonkeys();
        // 开始迭代
        for (int t = 0; t < maxGen; t++) {
            // 局部领导者阶段(LLP:所有的蜘蛛猴都有机会更新自己)
            LLP();
            // 全局领导者阶段(GLP:轮盘赌,随机选取,偏向于对fit值大的蜘蛛猴进行更新)
            GLP();
            // 全局领导者学习阶段(如果全局领导者有更新,则globalLimitCount=0,否则globalLimitCount++)
            GLLP();
            // 局部领导者学习阶段(如果局部领导者有更新,则localLimitCount=0,否则localLimitCount++)
            LLLP();
            // 局部领导者决策阶段
            LLDP();
            // 全局领导者决策阶段
            GLDP();
        }
        // 输出最好的结果
        System.out.println("变量取值为:" + Arrays.toString(bestSpiderMonkey.curVars));
        System.out.println("最优解为:" + bestSpiderMonkey.curObjValue);
    }

    // 全局领导者决策阶段
    private void GLDP() {
        if (globalLimitCount >= limitCnt) {
            globalLimitCount = 0;
            if (spiderMonkeyList.size() < maxgroupNum) {
                // 分裂
                List<SpiderMonkey> tempList = new ArrayList<>();
                for (SpiderMonkey[] spiderMonkeys : spiderMonkeyList) {
                    tempList.addAll(Arrays.asList(spiderMonkeys));
                }
                tempList.sort(new Comparator<SpiderMonkey>() {
                    @Override
                    public int compare(SpiderMonkey o1, SpiderMonkey o2) {
                        return Double.compare(o2.fit,o1.fit);
                    }
                });
                //
                int groupNum = spiderMonkeyList.size() + 1;
                spiderMonkeyList = new ArrayList<>();
                int avgNum = spiderMonkeyNum / groupNum;
                for (int i = 0; i < groupNum - 1; i++) {
                    SpiderMonkey[] spiderMonkeys = new SpiderMonkey[avgNum];
                    for (int j = 0; j < avgNum; j++) {
                        spiderMonkeys[j] = copySpiderMonkey(tempList.remove(0));
                    }
                    spiderMonkeyList.add(spiderMonkeys);
                }
                spiderMonkeyList.add(tempList.toArray(new SpiderMonkey[0]));
                localLimitCount = new int[groupNum];
            } else {
                // 融合
                SpiderMonkey[] spiderMonkeys = new SpiderMonkey[spiderMonkeyNum];
                int i = 0;
                for (SpiderMonkey[] monkeys : spiderMonkeyList) {
                    for (SpiderMonkey monkey : monkeys) {
                        spiderMonkeys[i++] = copySpiderMonkey(monkey);
                    }
                }
                spiderMonkeyList = new ArrayList<>();
                spiderMonkeyList.add(spiderMonkeys);
                localLimitCount = new int[]{0};
            }
            // 更新局部领导者
            localLeaderList = new ArrayList<>();
            for (SpiderMonkey[] spiderMonkeys : spiderMonkeyList) {
                localLeaderList.add(copySpiderMonkey(spiderMonkeys[0]));
                int index = localLeaderList.size() - 1;
                for (int i = 1; i < spiderMonkeys.length; i++) {
                    if (localLeaderList.get(index).fit < spiderMonkeys[i].fit) {
                        localLeaderList.set(index, copySpiderMonkey(spiderMonkeys[i]));
                    }
                }
            }
        }
    }

    // 局部领导者决策阶段
    private void LLDP() {
        int c = 0;
        for (int i = 0; i < spiderMonkeyList.size(); i++) {
            SpiderMonkey[] spiderMonkeys = spiderMonkeyList.get(i);
            if (localLimitCount[i] < limitCnt) {
                for (int j = 0; j < spiderMonkeys.length; j++) {
                    SpiderMonkey tempSpiderMonkey = copySpiderMonkey(spiderMonkeys[j]);
                    for (int m = 0; m < varNum; m++) {
                        if (random.nextDouble() <= LLDP_PR) {
                            tempSpiderMonkey.curVars[m] = lb[m] + random.nextDouble() * (ub[m] - lb[m]);
                        } else {
                            double moveDist = random.nextDouble() * (bestSpiderMonkey.curVars[m] - tempSpiderMonkey.curVars[m])
                                    + random.nextDouble() * (spiderMonkeys[random.nextInt(spiderMonkeys.length)].curVars[m] - tempSpiderMonkey.curVars[m]);
                            moveSpiderMonkey(tempSpiderMonkey, m, moveDist);
                        }
                    }
                    tempSpiderMonkey.curObjValue = getObjValue(tempSpiderMonkey.curVars);
                    tempSpiderMonkey.fit = 1 / tempSpiderMonkey.curObjValue;
                    if(greedy){
                        if(tempSpiderMonkey.fit > spiderMonkeys[j].fit){
                            spiderMonkeys[j] = tempSpiderMonkey;
                        }
                    }else{
                        spiderMonkeys[j] = tempSpiderMonkey;
                    }
                }
            }
            for (int j = 0; j < spiderMonkeys.length; j++) {
                for (int m = 0; m < spiderMonkeys[j].curVars.length; m++) {
                    positionArr[curC][c][m] = spiderMonkeys[j].curVars[m];
                }
                c++;
            }
        }
        curC++;
    }

    // 局部领导者学习阶段(如果局部领导者有更新,则localLimitCount=0,否则localLimitCount++)
    private void LLLP() {
        for (int i = 0; i < spiderMonkeyList.size(); i++) {
            boolean isUpdate = false;
            for (SpiderMonkey spiderMonkey : spiderMonkeyList.get(i)) {
                if (localLeaderList.get(i).fit < spiderMonkey.fit) {
                    localLeaderList.set(i, copySpiderMonkey(spiderMonkey));
                    isUpdate = true;
                }
            }
            if (isUpdate) {
                localLimitCount[i] = 0;
            } else {
                localLimitCount[i]++;
            }
        }
    }

    // 全局领导者学习阶段(如果全局领导者有更新,则globalLimitCount=0,否则globalLimitCount++)
    private void GLLP() {
        boolean isUpdate = false;
        for (int i = 0; i < spiderMonkeyList.size(); i++) {
            for (SpiderMonkey spiderMonkey : spiderMonkeyList.get(i)) {
                if (spiderMonkey.fit > bestSpiderMonkey.fit) {
                    bestSpiderMonkey = copySpiderMonkey(spiderMonkey);
                    isUpdate = true;
                }
            }
        }
        if (isUpdate) {
            globalLimitCount = 0;
        } else {
            globalLimitCount++;
        }
    }

    // 全局领导者阶段(GLP:轮盘赌,随机选取,偏向于对fit值大的蜘蛛猴进行更新)
    private void GLP() {
        int c = 0;
        for (int i = 0; i < spiderMonkeyList.size(); i++) {
            SpiderMonkey[] spiderMonkeys = spiderMonkeyList.get(i);
            // 计算fit总和
            double totalFit = 0;
            for (SpiderMonkey spiderMonkey : spiderMonkeys) {
                totalFit += spiderMonkey.fit;
            }
            // 轮盘赌的累计概率数组
            double[] p = new double[spiderMonkeys.length];
            for (int j = 0; j < p.length; j++) {
                p[j] = (spiderMonkeys[j].fit / totalFit) + (j == 0 ? 0 : p[j - 1]);
            }
            // 局部搜索
            for (int j = 0; j < localSearchCount; j++) {
                double r = random.nextDouble();
                for (int k = 0; k < p.length; k++) {
                    if (r <= p[k]) {
                        for (int m = 0; m < varNum; m++) {
                            double moveDist = random.nextDouble() * (bestSpiderMonkey.curVars[m] - spiderMonkeys[k].curVars[m])
                                    + (random.nextDouble() - 0.5) * 2 * (spiderMonkeys[random.nextInt(spiderMonkeys.length)].curVars[m] - spiderMonkeys[k].curVars[m]);
                            moveSpiderMonkey(spiderMonkeys[k], m, moveDist);
                        }
                        spiderMonkeys[k].curObjValue = getObjValue(spiderMonkeys[k].curVars);
                        spiderMonkeys[k].fit = 1 / spiderMonkeys[k].curObjValue;
                        break;
                    }
                }
            }
            for (int j = 0; j < spiderMonkeys.length; j++) {
                for (int m = 0; m < spiderMonkeys[j].curVars.length; m++) {
                    positionArr[curC][c][m] = spiderMonkeys[j].curVars[m];
                }
                c++;
            }
            spiderMonkeyList.set(i, spiderMonkeys);
        }
        curC++;
    }

    // 局部领导者阶段(LLP:所有的蜘蛛猴都有机会更新自己)
    private void LLP() {
        int c = 0;
        for (int i = 0; i < spiderMonkeyList.size(); i++) {
            SpiderMonkey[] spiderMonkeys = spiderMonkeyList.get(i);
            SpiderMonkey localLeader = localLeaderList.get(i);
            for (int j = 0; j < spiderMonkeys.length; j++) {
                // 以一定几率更新自己
                if (random.nextDouble() <= LLP_PR) {
                    SpiderMonkey tempSpiderMonkey = copySpiderMonkey(spiderMonkeys[j]);
                    for (int m = 0; m < varNum; m++) {
                        double moveDist = random.nextDouble() * (localLeader.curVars[m] - tempSpiderMonkey.curVars[m])
                                + (random.nextDouble() - 0.5) * 2 * (spiderMonkeys[random.nextInt(spiderMonkeys.length)].curVars[m] - tempSpiderMonkey.curVars[m]);
                        moveSpiderMonkey(tempSpiderMonkey, m, moveDist);
                    }
                    tempSpiderMonkey.curObjValue = getObjValue(tempSpiderMonkey.curVars);
                    tempSpiderMonkey.fit = 1 / tempSpiderMonkey.curObjValue;
                    if(greedy){
                        if(tempSpiderMonkey.fit > spiderMonkeys[j].fit){
                            spiderMonkeys[j] = tempSpiderMonkey;
                        }
                    }else{
                        spiderMonkeys[j] = tempSpiderMonkey;
                    }
                }
                for (int m = 0; m < spiderMonkeys[j].curVars.length; m++) {
                    positionArr[curC][c][m] = spiderMonkeys[j].curVars[m];
                }
                c++;
            }
            spiderMonkeyList.set(i, spiderMonkeys);
        }
        curC++;
    }

    // 初始化蜘蛛猴种群
    private void initSpiderMonkeys() {
        positionArr = new double[3 * maxGen][spiderMonkeyNum][varNum];
        SpiderMonkey[] spiderMonkeys = new SpiderMonkey[spiderMonkeyNum];
        SpiderMonkey localLeader = null;
        for (int i = 0; i < spiderMonkeyNum; i++) {
            spiderMonkeys[i] = getRandomSpiderMonkey();
            if (i == 0) {
                bestSpiderMonkey = copySpiderMonkey(spiderMonkeys[0]);
                localLeader = copySpiderMonkey(spiderMonkeys[0]);
            } else {
                if (bestSpiderMonkey.fit < spiderMonkeys[i].fit) {
                    bestSpiderMonkey = copySpiderMonkey(spiderMonkeys[i]);
                    localLeader = copySpiderMonkey(spiderMonkeys[0]);
                }
            }
        }
        spiderMonkeyList.add(spiderMonkeys);
        localLeaderList.add(localLeader);
    }

    // 获取一个随机生成的蜘蛛猴
    SpiderMonkey getRandomSpiderMonkey() {
        double[] vars = new double[varNum];
        for (int j = 0; j < vars.length; j++) {
            vars[j] = lb[j] + random.nextDouble() * (ub[j] - lb[j]);
        }
        double objValue = getObjValue(vars);
        return new SpiderMonkey(vars.clone(), objValue, 1 / objValue);
    }

    // 控制spiderMonkey在第m个维度上移动n个距离
    public void moveSpiderMonkey(SpiderMonkey spiderMonkey, int m, double n) {
        // 移动
        spiderMonkey.curVars[m] += n;
        // 超出定义域的判断
        if (spiderMonkey.curVars[m] < lb[m]) {
            spiderMonkey.curVars[m] = lb[m];
        }
        if (spiderMonkey.curVars[m] > ub[m]) {
            spiderMonkey.curVars[m] = ub[m];
        }
    }

    /**
     * @param vars 自变量数组
     * @return 返回目标函数值
     */
    public double getObjValue(double[] vars) {
        //目标:在变量区间范围最小化 Z = x^2 + y^2 - xy - 10x - 4y +60
        return Math.pow(vars[0], 2) + Math.pow(vars[1], 2) - vars[0] * vars[1] - 10 * vars[0] - 4 * vars[1] + 60;
    }

    // 复制蜘蛛猴
    SpiderMonkey copySpiderMonkey(SpiderMonkey old) {
        return new SpiderMonkey(old.curVars.clone(), old.curObjValue, old.fit);
    }
}

可视化代码

import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 * @Author:WSKH
 * @ClassName:PlotUtil
 * @ClassType:
 * @Description:
 * @Date:2022/6/6/18:31
 * @Email:1187560563@qq.com
 * @Blog:https://blog.csdn.net/weixin_51545953?type=blog
 */
public class PlotUtil extends Application {

    //当前的时间轴
    private Timeline nowTimeline;
    //绘图位置坐标
    private double[][][] positionArr;

    public static void main(String[] args) {
        launch(args);
    }

    @Override
    public void start(Stage primaryStage) throws Exception {

        // 调用算法获取绘图数据
        SMO_Solver solver = new SMO_Solver();
        solver.solve();
        positionArr = solver.positionArr;

        // 画图
        try {
            BorderPane root = new BorderPane();
            root.setStyle("-fx-padding: 20;");
            Scene scene = new Scene(root, 1600, 900);
            double canvasWid = 800;
            double canvasHei = 800;
            //根据画布大小缩放坐标值
            this.fixPosition(canvasWid - 100, canvasHei - 100);

            //画布和画笔
            HBox canvasHbox = new HBox();
            Canvas canvas = new Canvas();
            canvas.setWidth(canvasWid);
            canvas.setHeight(canvasHei);
            canvasHbox.setPrefWidth(canvasWid);
            canvasHbox.getChildren().add(canvas);
            canvasHbox.setAlignment(Pos.CENTER);
            canvasHbox.setStyle("-fx-spacing: 20;" +
                    "-fx-background-color: #87e775;");
            root.setTop(canvasHbox);
            GraphicsContext paintBrush = canvas.getGraphicsContext2D();

            //启动
            HBox hBox2 = new HBox();
            Button beginButton = new Button("播放迭代过程");
            hBox2.getChildren().add(beginButton);
            root.setBottom(hBox2);
            hBox2.setAlignment(Pos.CENTER);
            //启动仿真以及暂停仿真
            beginButton.addEventHandler(MouseEvent.MOUSE_CLICKED, event -> {
                nowTimeline.play();
            });

            //创建扫描线连接动画
            nowTimeline = new Timeline();
            createAnimation(paintBrush);

            primaryStage.setScene(scene);
            primaryStage.show();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 修正cityPositionArr的坐标,让画出来的点在画布内
     *
     * @param width
     * @param height
     */
    private void fixPosition(double width, double height) {
        double minX = Double.MAX_VALUE;
        double maxX = -Double.MAX_VALUE;
        double minY = Double.MAX_VALUE;
        double maxY = -Double.MAX_VALUE;

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                minX = Math.min(minX, this.positionArr[i][j][0]);
                maxX = Math.max(maxX, this.positionArr[i][j][0]);
                minY = Math.min(minY, this.positionArr[i][j][1]);
                maxY = Math.max(maxY, this.positionArr[i][j][1]);
            }
        }

        double multiple = Math.max((maxX - minX) / width, (maxY - minY) / height);

        //转化为正数数
        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                if (minX < 0) {
                    this.positionArr[i][j][0] = this.positionArr[i][j][0] - minX;
                }
                if (minY < 0) {
                    this.positionArr[i][j][1] = this.positionArr[i][j][1] - minY;
                }
            }
        }

        for (int i = 0; i < this.positionArr.length; i++) {
            for (int j = 0; j < this.positionArr[0].length; j++) {
                this.positionArr[i][j][0] = this.positionArr[i][j][0] / multiple;
                this.positionArr[i][j][1] = this.positionArr[i][j][1] / multiple;
            }
        }

    }

    /**
     * 用画笔在画布上画出所有的孔
     * 画第i代的所有粒子
     */
    private void drawAllCircle(GraphicsContext paintBrush, int i) {
        paintBrush.clearRect(0, 0, 2000, 2000);
        paintBrush.setFill(Color.RED);
        for (int j = 0; j < this.positionArr[i].length; j++) {
            drawCircle(paintBrush, i, j);
        }
    }

    /**
     * 用画笔在画布上画出一个孔
     * 画第i代的第j个粒子
     */
    private void drawCircle(GraphicsContext paintBrush, int i, int j) {
        double x = this.positionArr[i][j][0];
        double y = this.positionArr[i][j][1];
        double radius = 2;
        // 圆的直径
        double diameter = radius * 2;
        paintBrush.fillOval(x, y, diameter, diameter);
    }

    /**
     * 创建动画
     */
    private void createAnimation(GraphicsContext paintBrush) {
        for (int i = 0; i < this.positionArr[0].length; i++) {
            int finalI = i;
            KeyFrame keyFrame = new KeyFrame(Duration.seconds(i * 0.05), event -> drawAllCircle(paintBrush, finalI));
            nowTimeline.getKeyFrames().add(keyFrame);
        }
    }

}

优化流程(图太大了,所以放最后...)

在这里插入图片描述

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
目录
相关文章
|
27天前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
224 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
24天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的XGBoost时间序列预测算法matlab仿真
本程序基于Matlab 2024b实现,结合粒子群优化(PSO)与XGBoost算法,用于时间序列预测。通过PSO优化XGBoost超参数,提升预测精度。程序包含完整注释与操作视频,运行后生成预测效果图及性能评估指标RMSE。
|
24天前
|
存储 算法 安全
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
123 0
|
24天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
|
25天前
|
算法 Java 调度
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
103 0
|
25天前
|
机器学习/深度学习 算法 网络性能优化
【EI复现】基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(Matlab代码实现)
【EI复现】基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(Matlab代码实现)
|
26天前
|
机器学习/深度学习 分布式计算 算法
【升级版本】基于多目标粒子群算法的微电网优化调度【风光、储能、柴油、燃气、电网交互】(Matlab代码实现)
【升级版本】基于多目标粒子群算法的微电网优化调度【风光、储能、柴油、燃气、电网交互】(Matlab代码实现)
|
26天前
|
安全 调度 Python
【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)
【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)

热门文章

最新文章