十问科学家丨解锁下一个语音技术关键场景还有多远?

简介: 鄢志杰长期从事语音交互智能的研究、 产品化和商业化工作,在他看来,虽然现在语音技术在持续进步,但是离解锁下一个关键场景还有很长的距离——技术发展的斜率还不够陡峭。

image.png

鄢志杰长期从事语音交互智能的研究、 产品化和商业化工作,在他看来,虽然现在语音技术在持续进步,但是离解锁下一个关键场景还有很长的距离——技术发展的斜率还不够陡峭。

 

人物丨鄢志杰 阿里巴巴达摩院语音实验室负责人



image.png


2003年进入中科大语音实验室攻读博士时,鄢志杰已经笃定认为,彼时尚未成为主流的语音行业以后必成大势。博士毕业后他进入微软亚洲研究院,曾任语音团队主管研究员,2015年加入阿里巴巴集团。同时,他还是IEEE高级会员,长期担任语音领域顶级学术会议及期刊专家评审。


深耕语音行业十八年来,鄢志杰长期从事语音交互智能的研究、产品化和商业化工作,在语音识别、语音合成、语音交互等多个领域展开深入研究并成果斐然,其研究成果被广泛应用于阿里巴巴集团、蚂蚁金服及微软公司多项语音相关产品中。


image.png


Q1:你怎么向公众去描述现在正在研究的方向?


鄢志杰:我通常会用比喻的方式。其实AI很多研究方向,都是和人的感知相关。如果说计算机视觉对应的是眼睛,我做的就是耳朵和嘴——耳朵是语音识别,把语音转成文字,嘴就是语音合成,把文字转成语音。


image.png


Q2:这几年,智能语音交互领域还有没有让你很意外的应用场景?


鄢志杰:唯一有一个意外是,在我研究生阶段开始学这个技术的时候,没想到今天在限定领域的语音交互的自然度,能够达到这么高的水平。比如说我接到天猫超市打来的电话,说马上要配送了,问在不在家里,送到门口还是送到物业?其实这都是AI打的电话,但很多人并没有感觉到不同。当然这还只是在一个非常特定的领域,其他更广泛的领域里现在技术还做不到这么自然的程度。


image.png


Q3:现在技术的限制主要是哪些?


鄢志杰:限制还是很多的。比如语音识别,还是停留在各种场景下更普适的语音识别准确率。当年IBM的Via Voice,要带一个耳麦讲话,现在手机可以在稍远距离准确识别,智能音箱又可以做到更大距离。但这些的前提是,在家里边不会有太多的噪声,而且这些场景都是单人的,都是跟机器去完成一个单独的任务——要么是听写,要么是想点一首歌。但如果加了很多别的因素,准确率就会逐渐下降,比如说噪音、口音、多人,甚至不是要完成一个任务而是多人闲聊甚至争吵,还有语音之间的互相覆盖等等。


语音合成也一样,现在AI读一个句子、甚至一段话基本上可以以假乱真,但是读一个篇章以后,例如小说,就会发现AI说话没有感情的起伏,是千篇一律的。


image.png


Q4:这些技术的障碍,是什么层面的障碍?算法?还是硬件 ?


鄢志杰:我觉得都有。刚才说在一个真实环境下对人与人交流进行拾音就是采集的问题,这些就很基础,甚至涉及麦克风本身,在这些信号采集之上的信号处理、降噪增强算法问题也不少。


拾音后,如何处理多人同时讲话,比如两个人在争吵,怎么做到这种场景下有效的语音分离,不仅辨识出说话的内容,还要识别出说话人的身份,这些技术都是上层的,算法也会涉及。


image.png


Q5:好像现在整个语音交互停留在了一个平台期,当年从上一个平台期到这个平台期,到底是哪些因素改变了?


鄢志杰:第一个因素是移动互联网,表面上看起来没有关系,其实关系很大。因为移动互联网带来一个巨大的好处,就是获取合法合规的数据越来越容易了。以前我们刚学技术的时候,积累语音素材要请人到录音棚里对着麦克风录音,这样做的问题首先是不真实,因为是在录音棚,第二是覆盖的人数很有限——能雇到几百人就很多了。


第二个因素是深度学习,除了算法以外,还有数据和算力。


然而,我觉得最终是应用的推动。今天用户能够通过手机、音箱去获得互联网上的内容,有一些可以给C端用户用起来的东西,促进了技术的良性循环发展。


image.png


Q6:深度学习出来之后的确是解锁了很多方法,提供了一个完全不一样的思路,但是另外一方面,是不是也透支了很多过去的积累?


鄢志杰:这种担心很有必要。


上一个问题的回答里,或许还要加一个“开源”,这也是推动技术发展的重要力量。开源带来一个问题,就是现在很多新一代研究者很容易通过开源站到一定的高度上去,但这带来的也许是个副作用——当初应该练的那些“童子功”可能就直接跳过了,研究者有可能不知道那个东西是怎么来的了。


其实任何一个算法应用都有一个核心(Core),但现在少有人去做了,大家都在上面去不停地去包装——少有人去做巨人,但大家都愿意站在巨人的肩膀上。


还有一些老的研究方向,也许它的理论有更漂亮的地方,但是因为在现阶段确实不如神经网络的这一套理论流行、应用效果更好,可能就会被慢慢遗忘,“武林秘籍”可能就失传了。我不确定最终结果会怎么样,但回看过去,在深度学习火起来之前,神经网络的研究也经历过类似阶段,那个时候是别的统计建模框架明显好于神经网络,那个时候写神经网络的论文不少都会被拒。


image.png


Q7:过去几年你觉得智能语音领域发生的最了不起的进步是什么?


鄢志杰:深度学习就是最了不起的进步。如果从2010年左右语音和深度学习结合的那一波技术爆发开始看,最近几年可能算是平台期,但严格地说,从技术上讲,过去的十年是少有的、持续进步的十年。


以前技术都是阶跃性的进步,或者叫脉冲式的进步,差不多一个脉冲以后又要沉寂10年左右的时间。但近10年来确实是持续在进步的,虽然都在深度学习的大框架下,但是基本上两三年会有一个大的模型升级。


现在的平台期我会把它形容为:虽然技术发展持续上升了10年,但是离我们解锁下一个关键场景还有很长的距离。也就是说,技术发展的斜率还不够陡峭。


image.png


Q8:你在阿里巴巴的工作状态是什么样的?偏研究还是偏落地?


鄢志杰:严格地说,我是在探索高技术如何产生高价值的路径。


世界上有很多是单纯的高价值的事情,比如有人开玩笑说小龙虾产业的规模曾经很长一段时间都是超过云计算的。同样,世界上也有很多纯的高技术,包括很多基础性的技术,例如数学研究。


我认为达摩院的定位是要找到同时满足这两个条件的事情,这是第一个难点。


第二个难点是在一个中国的高科技公司做这件事情,这是一种绝无仅有的体验。达摩院跟传统意义上西方高科技公司做研究院不一样,跟政府资助的大学和科研院所又不一样,所有这些事情是没有人干过的。


image.png


Q9:到目前为止,这个体系进展如何?哪些地方比较满意,哪些地方问题还比较大?


鄢志杰:满意的地方,我觉得是在语音品类上。通过我们自己做研究,再做内部的应用来构建完善这些技术,然后再把这些技术变成产品放到阿里云上,对外输出给别的行业。我把这部分叫做“中场”,这是比较满意的部分。


为什么叫“中场”,这是我的一个“前中后场”的理论,与足球有关。


足球有个最大的特点:射门10次可能只进一次,这是和篮球很大的不同。这就像极了真正探索性的研究,就是说可能要承受90%的失败,然后有一次能够成功。我就把它比喻为“前场”,真正的探索式的创新出现在前场,通过不断保持冲击,孕育好多颗种子,最终少数一些种子能够长出来。


而“中场”就是保持这样的冲击力的基础,创新不可能突然出现,孕育种子就得有土壤。最简单的例子是,当我有一个创新想法的时候,到底是三缺一的去干,还是一缺三的去干,这是个很重要的问题。


当一缺三的时候,基本上这个创新很难有效的发生;而三缺一的时候,项目就有点希望,这里“三”就来源于中场的积累,比如今天我们要去做一个产品,发现要用到语音的某一个技术、视觉的某一个技术,而达摩院在“中场”已经有很成熟的一些积累,马上就可以为我所用,这个时候就能站在他们的肩膀上做相应的事情。


“后场”就是真正的发动机,在达摩院里就是比较偏纯研究的团队,研究的探索性风险极高,“中场”也要保护“后场”,使“后场”能有一个为稳定良好的环境去长期投入研究。


我现在精力主要投入在“如何让大家有效地形成一个体系”这件事上,研究反而变成兴趣了,但我依然特别享受跟“后场”的同学在一起讨论的时间。


image.png


Q10:这个分类很创新,那对中场这些人的要求是什么?


鄢志杰:举个例子来说,AI平台类的东西,主要就是由“中场”的人来做的, 它本质上就是把AI的能力变成所有人可以“开箱即用”的一种能力,然后帮助别人去做他们的事情。比如,有人就拿着达摩院人脸识别的技术去做考勤机,有人拿着达摩院语音的技术去做客服系统等等。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Genesis:卡内基梅隆大学联合 20 多所研究机构开源生成式物理引擎,能够模拟各种材料、物体和物理运动现象
Genesis是由卡内基梅隆大学联合20多所研究机构开源的生成式物理引擎,能够模拟世界万物,具有高度的物理准确性和快速的模拟速度,适用于机器人仿真、游戏开发、电影特效制作等多个领域。
106 21
Genesis:卡内基梅隆大学联合 20 多所研究机构开源生成式物理引擎,能够模拟各种材料、物体和物理运动现象
|
4月前
|
人工智能
合成生物学:设计生命的新时代
【9月更文挑战第19天】合成生物学作为21世纪新兴交叉学科,融合基因工程、系统生物学与计算机科学,通过工程化设计理念改造生物体遗传物质,开创人工生命体新时代。它旨在构建自然界中不存在的生物系统,应对能源、材料、健康和环保等全球挑战。核心技术包括基因编辑(如CRISPR/Cas9)、基因合成及系统生物学方法。应用领域涵盖医药、化学品与生物材料、农业及食品,展现出巨大潜力。预计到2025年,其经济价值将达1000亿美元。尽管面临法律、伦理等挑战,但合成生物学正引领创新未来,助力人类可持续发展。
|
8月前
|
传感器 人工智能 搜索推荐
机器人技术:从科幻走向现实
随着科技的迅猛发展,机器人技术正以令人难以置信的速度走向成熟和应用。本文将探讨机器人技术的发展历程、当前应用领域以及未来可能的发展方向,展示机器人技术在改变我们生活和工作方式方面的潜力。
66 0
|
机器学习/深度学习 算法 机器人
CMU发表新型灵巧机器人算法,准确学习日常家具的操纵方法
CMU发表新型灵巧机器人算法,准确学习日常家具的操纵方法
133 0
|
传感器 机器人 大数据
走路最快的类人机器人!能模拟人类肌肉发力,还能小跑前进!
走路最快的类人机器人!能模拟人类肌肉发力,还能小跑前进!
227 0
|
机器学习/深度学习 人工智能 算法
史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步
史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步
212 0
|
机器学习/深度学习 人工智能 达摩院
十问科学家 | 关于语音交互,鄢志杰这么说
鄢志杰长期从事语音交互智能的研究、 产品化和商业化工作,在他看来,虽然现在语音 技术在持续进步,但是离解锁下一个关键场景还有很长的距离——技术发展的斜率还不 够陡峭。
600 0
|
传感器 人工智能 机器人
|
人工智能 人机交互 芯片
脑机接口技术重大突破!首次帮助瘫痪男子恢复运动和触觉
触觉是我们感受外部世界不可或缺的感官,但许多人却因脊髓损伤或因患病瘫痪而失去这种能力。不过,最近非营利组织巴特尔研究所的研究人员宣称,他们首次利用脑机接口(BCI)技术帮助一名美国瘫痪男子恢复了手部触觉。
|
人机交互 芯片
脑机接口技术重大突破!首次帮助瘫痪男子恢复动作和触觉
据外媒报道,触觉是我们感受外部世界不可或缺的感官,但许多人却因脊髓损伤或因患病瘫痪而失去这种能力。不过,最近非营利组织巴特尔研究所的研究人员宣称,他们首次利用脑机接口(BCI)技术帮助一名美国瘫痪男子恢复了手部触觉。