开发者社区> 木洛> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

现代IM系统中的消息系统架构 - 模型篇

简介: 前言 在架构篇中我们介绍了现代IM消息系统的架构,介绍了Timeline的抽象模型以及基于Timeline模型构建的一个支持『消息漫游』、『多端同步』和『消息检索』多种高级功能的消息系统的典型架构。
+关注继续查看

前言

架构篇中我们介绍了现代IM消息系统的架构,介绍了Timeline的抽象模型以及基于Timeline模型构建的一个支持『消息漫游』、『多端同步』和『消息检索』多种高级功能的消息系统的典型架构。架构篇中为了简化读者对Tablestore Timeline模型的理解,概要性的对Timeline的基本逻辑模型做了介绍,以及对消息系统中消息的多种同步模式、存储和索引的基本概念做了一个科普。 

本篇文章是对架构篇的一个补充,会对Tablestore的Timeline模型做一个非常详尽的解读,让读者能够深入到实现层面了解Timeline的基本功能以及核心组件。最后我们还是会基于IM消息系统这个场景,来看如何基于Tablestore Timeline实现IM场景下消息同步、存储和索引等基本功能。

Timeline模型

Timeline模型以『简单』为设计目标,核心模块构成比较清晰明了,主要包括:

  • Store:Timeline存储库,类似数据库的表的概念。
  • Identifier:用于区分Timeline的唯一标识。
  • Meta:用于描述Timeline的元数据,元数据描述采用free-schema结构,可自由包含任意列。
  • Queue:一个Timeline内所有Message存储在Queue内。
  • Message:Timeline内传递的消息体,也是一个free-schema的结构,可自由包含任意列。
  • Index:包含Meta Index和Message Index,可对Meta或Message内的任意列自定义索引,提供灵活的多条件组合查询和搜索。

Timeline Store

Timeline Store是Timeline的存储库,对应于数据库内表的概念。上图是Timeline Store的结构图,Store内会存储所有的Timeline数据。Timeline是一个面向海量消息的数据模型,同时用于消息存储库和同步库,需要满足多种要求:

  • 支撑海量数据存储:对于消息存储库来说,如果需要消息永久存储,则随着时间的积累,数据规模会越来越大,需要存储库能应对长时间积累的海量消息数据存储,需要能达到PB级容量。
  • 低存储成本:消息数据的冷热区分是很明显的,大部分查询都会集中在热数据,所以对于冷数据需要有一个比较低成本的存储方式,否则随着时间的积累数据量不断膨胀,存储成本会非常大。
  • 数据生命周期管理:不管是对于消息数据的存储还是同步,数据都需要定义生命周期。存储库是用于在线存储消息数据本身,通常需要设定一个较长周期的保存时间。而同步库是用于写扩散模式的在线或离线推送,通常设定一个较短的保存时间。
  • 极高的写入吞吐:各类场景下的消息系统,除了类似微博、头条这种类型的Feeds流系统,像绝大部分即时通讯或朋友圈这类消息场景,通常是采用写扩散的消息同步模式,写扩散要求底层存储具备极高的写入吞吐能力,以应对消息洪峰。
  • 低延迟的读:消息系统通常是应用在在线场景,所以对于查询要求低延迟。

 

Tablestore Timeline的底层是基于LSM存储引擎的分布式数据库,LSM的最大优势就是对写入非常友好,天然适合消息写扩散的模式。同时对查询也做了极大优化,例如热数据进缓存、bloom filter等等。数据表采用Range Partition的分区模式,能提供水平扩展的服务能力,以及能自动探测并处理热点分区的负载均衡策略。为了满足同步库和存储库对存储的不同要求,也提供了一些灵活的自定义配置,主要包括:

  • Time to live(数据生命周期):可自定义数据生命周期,例如永久保存,或者保存N天。
  • Storage type(存储类型):自定义存储类型,对存储库来说,HDD是最好的选择,对同步库来说,SSD是最好的选择。

Timeline Module

Timeline Store内能存储海量的Timeline,单个Timeline的详细结构图如上,可以看到Timeline主要包含了三大部分:

  • Timeline Meta:元数据部分,用于描述Timeline,包括:
    • Identifier:用于唯一标识Timeline,可包含多个字段。
    • Meta:用于描述Timeline的元数据,可包含任意个数任意类型的字段。
    • Meta Index:元数据索引,可对元数据内任意属性列建索引,支持多字段条件组合查询和检索。
  • Timeline Queue:用于存储和同步消息的队列,队列中元素由两部分组成:
    • Sequence Id:顺序ID,队列中用于定位Message的位点信息,在队列中顺序ID保持递增。
    • Message:队列中承载消息的实体,包含了消息的完整内容。
  • Timeline Data:Timeline的数据部分就是Message,Message主要包含:
    • Message:消息实体,其内部也可以包含任意数量任意类型字段。
    • Message Index:消息数据索引,可对消息实体内任意列做索引,支持多字段条件组合查询和检索。

 

IM消息系统建模

以一个简易版IM系统为例,来看如何基于Tablestore Timeline模型建模。按照上图中的例子,存在A、B、C三个用户,A与B发生单聊,A与C发生单聊,以及A、B、C组成一个群聊,来看下在这个场景下消息同步、存储以及读写流程分别如何基于Tablestore Timeline建模。

 

消息同步模型

消息同步选择写扩散模型,能完全利用Tablestore Timeline的优势,以及针对IM消息场景读多写少的特性,通过写扩散来平衡读写,均衡整个系统的资源。写扩散模型下,每个接收消息的个体均拥有一个收件箱,所有需要同步至该个体的消息需要投递到其收件箱内。图上例子中,A、B、C三个用户分别拥有收件箱,每个用户不同的设备端,均从同一个收件箱内拉取新消息。

 

消息同步库

收件箱存储在同步库内,同步库中每个收件箱对应一个Timeline。根据图上的例子,总共存在3个Timeline作为收件箱。每个消息接收端保存有本地最新拉取的消息的SequenceID,每次拉取新消息均是从该SequenceID开始拉取消息。对同步库的查询会比较频繁,通常是对最新消息的查询,所以要求热数据尽量缓存在内存中,能提供高并发低延迟的查询。所以对同步库的配置,一般是需要SSD存储。消息如果已经同步到了所有的终端,则代表收件箱内的该消息已经被消费完毕,理论上可以清理。但设计上来说不做主动清理,而是给数据定义一个较短的生命周期来自动过期,一般定义为一周或者两周。数据过期之后,如果仍要同步拉取新消息,则需要退化到读扩散的模式,从存储库中拉取消息。

 

消息存储库

消息存储库中保存有每个会话的消息,每个会话的发件箱对应一个Timeline。发件箱内的消息支持按会话维度拉取消息,例如浏览某个会话内的历史消息则通过读取发件箱完成。一般来说,新消息通过在线推送或者查询同步库可投递到各个接收端,所以对存储库的查询会相对来说较少。而存储库用于长期存储消息,例如永久存储,相对同步库来说数据量会较大。所以存储库的选择一般是HDD,数据生命周期根据消息需要保存的时间来定,通常是一个较长的时间。

 

消息索引库

消息索引库依附于存储库,使用了Timeline的Message Index,可以对存储库内的消息进行索引,例如对文本内容的全文索引、收件人、发件人以及发送时间的索引等,能支持全文检索等高级查询和搜索。

 

总结

本篇文章主要对Tablestore Timeline模型进行了详解,介绍了Timeline各模块包括Store、Meta、Queue、Data和Index等,最后以一个简单的IM场景举例如何基于Timeline来建模。在下一篇实现篇中,会直接基于Tablestore Timeline来实现一个简易版的支持单聊、群聊、元数据管理以及消息检索的IM系统,敬请期待。欢迎加入我们的技术交流群(钉钉:11789671),来与我们一起探讨。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【Vue 快速入门系列】解读MVVM模型、数据代理
【Vue 快速入门系列】解读MVVM模型、数据代理
7 0
消息队列面试解析系列(三)-消息模型辨析(下)
消息队列面试解析系列(三)-消息模型辨析
75 0
推荐系统中不得不说的DSSM双塔模型
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 本文主要介绍项目中用于商业兴趣建模的DSSM双塔模型。作为推荐领域中大火的双塔模型,因为效果不错并且对工业界十分友好,所以被各大厂广泛应用于推荐系统中。
1846 0
快速掌握:大型分布式系统中的缓存架构
本文主要介绍大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景。
8211 0
推荐系统-基于矩阵分解的LFM模型
  这里我想给大家介绍另外一种推荐系统,这种算法叫做潜在因子(Latent Factor)算法。这种算法是在NetFlix(没错,就是用大数据捧火《纸牌屋》的那家公司)的推荐算法竞赛中获奖的算法,最早被应用于电影推荐中。
8485 0
《分布式系统:概念与设计》一2.3 体系结构模型
本节书摘来华章计算机《分布式系统:概念与设计》一书中的第2章 ,第2.3节,(英) George Coulouris Jean DollimoreTim Kindberg Gordon Blair 著 金蓓弘 马应龙 等译 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1376 0
《分布式系统:概念与设计》一第2章 系统模型
本节书摘来华章计算机《分布式系统:概念与设计》一书中的第2章 ,第2.1节,(英) George Coulouris Jean DollimoreTim Kindberg Gordon Blair 著 金蓓弘 马应龙 等译 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
937 0
+关注
木洛
阿里云高级技术专家,表格存储(TableStore)研发,专注NoSQL领域技术和解决方案。
文章
问答
来源圈子
更多
阿里云存储基于飞天盘古2.0分布式存储系统,产品包括对象存储OSS、块存储Block Storage、共享文件存储NAS、表格存储、日志存储与分析、归档存储及混合云存储等,充分满足用户数据存储和迁移上云需求,连续三年跻身全球云存储魔力象限四强。
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
分布式流处理框架——功能对比和性能评估
立即下载
FLASH:大规模分布式图计算引擎及应用
立即下载
基于streaming构建统一的数据处理引擎的挑战与实践
立即下载