Flink1.7.2 Source、Window数据交互源码分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Source如何按partition发射数据到对应的Window Window 如何处理对应的Source发过来的对应的partition数据 理解Flink 数据从Source到Window,上下游数据交换的过程

Flink1.7.2 Source、Window数据交互源码分析

源码

概述

  • Source如何按partition发射数据到对应的Window
  • Window 如何处理对应的Source发过来的对应的partition数据
  • 理解Flink 数据从Source到Window,上下游数据交换的过程

StreamGraph 图

输入数据

1 2 3 4 5 6 7 8 9 10

WordCount程序

package com.opensourceteams.module.bigdata.flink.example.stream.worldcount.nc.parallelism

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time

/**
  * nc -lk 1234  输入数据
  */
object SocketWindowWordCountLocal {



  def main(args: Array[String]): Unit = {


    val port = 1234
    // get the execution environment
   // val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val configuration : Configuration = getConfiguration(true)

    val env:StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment(1,configuration)





    // get input data by connecting to the socket
    val dataStream = env.socketTextStream("localhost", port, '\n')



    import org.apache.flink.streaming.api.scala._
    val textResult = dataStream.flatMap( w => w.split("\\s") ).map( w => WordWithCount(w,1))
      .keyBy("word")
      /**
        * 每20秒刷新一次,相当于重新开始计数,
        * 好处,不需要一直拿所有的数据统计
        * 只需要在指定时间间隔内的增量数据,减少了数据规模
        */
      .timeWindow(Time.seconds(5))
      //.countWindow(3)
      //.countWindow(3,1)
      //.countWindowAll(3)


      .sum("count" )

    textResult
      .setParallelism(3)
      .print()




    if(args == null || args.size ==0){


      println("==================================以下为执行计划==================================")
      println("执行地址(firefox效果更好):https://flink.apache.org/visualizer")
      //执行计划
      println(env.getExecutionPlan)
      println("==================================以上为执行计划 JSON串==================================\n")
      //StreamGraph
     //println(env.getStreamGraph.getStreamingPlanAsJSON)



      //JsonPlanGenerator.generatePlan(jobGraph)

      env.execute("默认作业")

    }else{
      env.execute(args(0))
    }

    println("结束")

  }


  // Data type for words with count
  case class WordWithCount(word: String, count: Long){
    //override def toString: String = Thread.currentThread().getName + word + " : " + count
  }


  def getConfiguration(isDebug:Boolean = false):Configuration = {

    val configuration : Configuration = new Configuration()

    if(isDebug){
      val timeout = "100000 s"
      val timeoutHeartbeatPause = "1000000 s"
      configuration.setString("akka.ask.timeout",timeout)
      configuration.setString("akka.lookup.timeout",timeout)
      configuration.setString("akka.tcp.timeout",timeout)
      configuration.setString("akka.transport.heartbeat.interval",timeout)
      configuration.setString("akka.transport.heartbeat.pause",timeoutHeartbeatPause)
      configuration.setString("akka.watch.heartbeat.pause",timeout)
      configuration.setInteger("heartbeat.interval",10000000)
      configuration.setInteger("heartbeat.timeout",50000000)
    }


    configuration
  }


}

源码分析(Source)

RecordWriter.emit

  • record 数据为: WordWithCount(1,1)
  • 也就是Source.通过Socket.connect 得到流数据后,按行拆分,进行flatMap,map函数之后,得到的数据
  • numChannels为Source partitions,这个并行度是在DataStream.setParallelism(3)设置的
  • channelSelector.selectChannels(record, numChannels),这个是按key,进行hash,算得当前元素所分的partition,即为change
  • 续续调用 RecordWriter.emit()

    public void emit(T record) throws IOException, InterruptedException {
        emit(record, channelSelector.selectChannels(record, numChannels));
    }

RecordWriter.emit

  • 经调试,按key,hash % 并行度,分配的数据如下

    key:2     partition:0
    key:3     partition:0
    key:4     partition:0
    key:6     partition:0
    
    key:1     partition:1
    key:5     partition:1
    key:8     partition:1
    key:10    partition:1
    
    key:7     partition:2
    key:9     partition:2
  • record进行序列化,数据长度写进ByteBuffer lengthBuffer,数据写进ByteBuffer dataBuffer;

    serializer.serializeRecord(record);
  • 调用RecordWriter.copyFromSerializerToTargetChannel(channel)往通道中写数据
    private void emit(T record, int[] targetChannels) throws IOException, InterruptedException {
        serializer.serializeRecord(record);

        boolean pruneAfterCopying = false;
        for (int channel : targetChannels) {
            if (copyFromSerializerToTargetChannel(channel)) {
                pruneAfterCopying = true;
            }
        }

        // Make sure we don't hold onto the large intermediate serialization buffer for too long
        if (pruneAfterCopying) {
            serializer.prune();
        }
    }

RecordWriter.copyFromSerializerToTargetChannel

  • getBufferBuilder(targetChannel)通过channel,得到BufferBuilder,就是得到当前的partition写入数据对象BufferBuilder,其实就是操作ResultPartition.subPartitions

    BufferBuilder bufferBuilder = getBufferBuilder(targetChannel);
  • 每个partition写入的数据,对应到各自的window,这样就实现了,在source端将数据分区,对应的window处理source对应的分区数据

    subpartitions = {ResultSubpartition[3]@5749} 
    0 = {PipelinedSubpartition@5771} "PipelinedSubpartition#0 [number of buffers: 0 (0 bytes), number of buffers in backlog: 0, finished? false, read view? true]"
    1 = {PipelinedSubpartition@5772} "PipelinedSubpartition#1 [number of buffers: 0 (0 bytes), number of buffers in backlog: 0, finished? false, read view? true]"
    2 = {PipelinedSubpartition@5773} "PipelinedSubpartition#2 [number of buffers: 0 (0 bytes), number of buffers in backlog: 0, finished? false, read view? true]"
  • BufferConsumer是消费BufferBuilder中的数据,BufferBuilder.append 是产生数据
/**
     * @param targetChannel
     * @return <tt>true</tt> if the intermediate serialization buffer should be pruned
     */
    private boolean copyFromSerializerToTargetChannel(int targetChannel) throws IOException, InterruptedException {
        // We should reset the initial position of the intermediate serialization buffer before
        // copying, so the serialization results can be copied to multiple target buffers.
        serializer.reset();

        boolean pruneTriggered = false;
        BufferBuilder bufferBuilder = getBufferBuilder(targetChannel);
        SerializationResult result = serializer.copyToBufferBuilder(bufferBuilder);
        while (result.isFullBuffer()) {
            numBytesOut.inc(bufferBuilder.finish());
            numBuffersOut.inc();

            // If this was a full record, we are done. Not breaking out of the loop at this point
            // will lead to another buffer request before breaking out (that would not be a
            // problem per se, but it can lead to stalls in the pipeline).
            if (result.isFullRecord()) {
                pruneTriggered = true;
                bufferBuilders[targetChannel] = Optional.empty();
                break;
            }

            bufferBuilder = requestNewBufferBuilder(targetChannel);
            result = serializer.copyToBufferBuilder(bufferBuilder);
        }
        checkState(!serializer.hasSerializedData(), "All data should be written at once");

        if (flushAlways) {
            targetPartition.flush(targetChannel);
        }
        return pruneTriggered;
    }

rdWrecoiter.flushAll

  • 把bufferBuilders存储着BufferBuilder 数组,数组个数,对应着并行度的个数,每个BufferBuilder对应着ResultSubpartition.subpartitions的partition的PipelinedSubpartition,会对这些PipelinedSubpartition进行Flush,并给对应的Window进行处理
  • 调用PipelinedSubpartition.flushAll()
    public void flushAll() {
        targetPartition.flushAll();
    }

PipelinedSubpartition.flushAll()

  • 调用PipelinedSubpartition.notifyDataAvailable
  • 调用PipelinedSubpartitionView.notifyDataAvailable
public void flush() {
        final boolean notifyDataAvailable;
        synchronized (buffers) {
            if (buffers.isEmpty()) {
                return;
            }
            // if there is more then 1 buffer, we already notified the reader
            // (at the latest when adding the second buffer)
            notifyDataAvailable = !flushRequested && buffers.size() == 1;
            flushRequested = true;
        }
        if (notifyDataAvailable) {
            notifyDataAvailable();
        }
    }

PipelinedSubpartitionView.notifyDataAvailable

  • 调用LocalInputChannel.notifyDataAvailable
    public void notifyDataAvailable() {
        availabilityListener.notifyDataAvailable();
    }

LocalInputChannel.notifyDataAvailable

  • 调用InputChannel.notifyChannelNonEmpty()
  • 调用SingleInputGate.notifyChannelNonEmpty
    public void notifyDataAvailable() {
        notifyChannelNonEmpty();
    }

SingleInputGate.queueChannel

  • 通知Window,有数据产生了,可以开始消费了(处理数据)

      inputChannelsWithData.notifyAll();
private void queueChannel(InputChannel channel) {
        int availableChannels;

        synchronized (inputChannelsWithData) {
            if (enqueuedInputChannelsWithData.get(channel.getChannelIndex())) {
                return;
            }
            availableChannels = inputChannelsWithData.size();

            inputChannelsWithData.add(channel);
            enqueuedInputChannelsWithData.set(channel.getChannelIndex());

            if (availableChannels == 0) {
                inputChannelsWithData.notifyAll();
            }
        }

        if (availableChannels == 0) {
            InputGateListener listener = inputGateListener;
            if (listener != null) {
                listener.notifyInputGateNonEmpty(this);
            }
        }
    }

源码分析(Window)

OneInputStreamTask.run()

  • 调用StreamInputProcessor.processInput()进行处理,这个函数,会进行阻塞,如果没有读到数据的话
  • 注意,这是Window的处理线程,有多少个并行度,就会开多少个Window,就有多少个这个方法在一直处理Source不断发过来的数据
    protected void run() throws Exception {
        // cache processor reference on the stack, to make the code more JIT friendly
        final StreamInputProcessor<IN> inputProcessor = this.inputProcessor;

        while (running && inputProcessor.processInput()) {
            // all the work happens in the "processInput" method
        }
    }

StreamInputProcessor.processInput()

  • 这是一个阻塞的方法,读取Source中对应的partition中的数据,调用BarrierTracker.getNextNonBlocked()

    final BufferOrEvent bufferOrEvent = barrierHandler.getNextNonBlocked();
public boolean processInput() throws Exception {
        if (isFinished) {
            return false;
        }
        if (numRecordsIn == null) {
            try {
                numRecordsIn = ((OperatorMetricGroup) streamOperator.getMetricGroup()).getIOMetricGroup().getNumRecordsInCounter();
            } catch (Exception e) {
                LOG.warn("An exception occurred during the metrics setup.", e);
                numRecordsIn = new SimpleCounter();
            }
        }

        while (true) {
            if (currentRecordDeserializer != null) {
                DeserializationResult result = currentRecordDeserializer.getNextRecord(deserializationDelegate);

                if (result.isBufferConsumed()) {
                    currentRecordDeserializer.getCurrentBuffer().recycleBuffer();
                    currentRecordDeserializer = null;
                }

                if (result.isFullRecord()) {
                    StreamElement recordOrMark = deserializationDelegate.getInstance();

                    if (recordOrMark.isWatermark()) {
                        // handle watermark
                        statusWatermarkValve.inputWatermark(recordOrMark.asWatermark(), currentChannel);
                        continue;
                    } else if (recordOrMark.isStreamStatus()) {
                        // handle stream status
                        statusWatermarkValve.inputStreamStatus(recordOrMark.asStreamStatus(), currentChannel);
                        continue;
                    } else if (recordOrMark.isLatencyMarker()) {
                        // handle latency marker
                        synchronized (lock) {
                            streamOperator.processLatencyMarker(recordOrMark.asLatencyMarker());
                        }
                        continue;
                    } else {
                        // now we can do the actual processing
                        StreamRecord<IN> record = recordOrMark.asRecord();
                        synchronized (lock) {
                            numRecordsIn.inc();
                            streamOperator.setKeyContextElement1(record);
                            streamOperator.processElement(record);
                        }
                        return true;
                    }
                }
            }

            final BufferOrEvent bufferOrEvent = barrierHandler.getNextNonBlocked();
            if (bufferOrEvent != null) {
                if (bufferOrEvent.isBuffer()) {
                    currentChannel = bufferOrEvent.getChannelIndex();
                    currentRecordDeserializer = recordDeserializers[currentChannel];
                    currentRecordDeserializer.setNextBuffer(bufferOrEvent.getBuffer());
                }
                else {
                    // Event received
                    final AbstractEvent event = bufferOrEvent.getEvent();
                    if (event.getClass() != EndOfPartitionEvent.class) {
                        throw new IOException("Unexpected event: " + event);
                    }
                }
            }
            else {
                isFinished = true;
                if (!barrierHandler.isEmpty()) {
                    throw new IllegalStateException("Trailing data in checkpoint barrier handler.");
                }
                return false;
            }
        }
    }

BarrierTracker.getNextNonBlocked()

  • 调用inputGate.getNextBufferOrEvent();调到的是SingleInputGate.getNextBufferOrEvent()去读取Source发过来到当前Window中的数据
    public BufferOrEvent getNextNonBlocked() throws Exception {
        while (true) {
            Optional<BufferOrEvent> next = inputGate.getNextBufferOrEvent();
            if (!next.isPresent()) {
                // buffer or input exhausted
                return null;
            }

            BufferOrEvent bufferOrEvent = next.get();
            if (bufferOrEvent.isBuffer()) {
                return bufferOrEvent;
            }
            else if (bufferOrEvent.getEvent().getClass() == CheckpointBarrier.class) {
                processBarrier((CheckpointBarrier) bufferOrEvent.getEvent(), bufferOrEvent.getChannelIndex());
            }
            else if (bufferOrEvent.getEvent().getClass() == CancelCheckpointMarker.class) {
                processCheckpointAbortBarrier((CancelCheckpointMarker) bufferOrEvent.getEvent(), bufferOrEvent.getChannelIndex());
            }
            else {
                // some other event
                return bufferOrEvent;
            }
        }
    }

SingleInputGate.getNextBufferOrEvent

  • 这个才真正读Source发过来对应的partition,对应当前的Window中的数据,currentChannel.getNextBuffer();
  • inputChannelsWithData 这个对象进行线程阻塞,通知,就是一个开关,Source发过来的数据处理完了就关了,Source有新的数据发过来,就打开了,开关打开时,就可以进行Window数据处理了
private Optional<BufferOrEvent> getNextBufferOrEvent(boolean blocking) throws IOException, InterruptedException {
        if (hasReceivedAllEndOfPartitionEvents) {
            return Optional.empty();
        }

        if (isReleased) {
            throw new IllegalStateException("Released");
        }

        requestPartitions();

        InputChannel currentChannel;
        boolean moreAvailable;
        Optional<BufferAndAvailability> result = Optional.empty();

        do {
            synchronized (inputChannelsWithData) {
                while (inputChannelsWithData.size() == 0) {
                    if (isReleased) {
                        throw new IllegalStateException("Released");
                    }

                    if (blocking) {
                        inputChannelsWithData.wait();
                    }
                    else {
                        return Optional.empty();
                    }
                }

                currentChannel = inputChannelsWithData.remove();
                enqueuedInputChannelsWithData.clear(currentChannel.getChannelIndex());
                moreAvailable = !inputChannelsWithData.isEmpty();
            }

            result = currentChannel.getNextBuffer();
        } while (!result.isPresent());

        // this channel was now removed from the non-empty channels queue
        // we re-add it in case it has more data, because in that case no "non-empty" notification
        // will come for that channel
        if (result.get().moreAvailable()) {
            queueChannel(currentChannel);
            moreAvailable = true;
        }

        final Buffer buffer = result.get().buffer();
        if (buffer.isBuffer()) {
            return Optional.of(new BufferOrEvent(buffer, currentChannel.getChannelIndex(), moreAvailable));
        }
        else {
            final AbstractEvent event = EventSerializer.fromBuffer(buffer, getClass().getClassLoader());

            if (event.getClass() == EndOfPartitionEvent.class) {
                channelsWithEndOfPartitionEvents.set(currentChannel.getChannelIndex());

                if (channelsWithEndOfPartitionEvents.cardinality() == numberOfInputChannels) {
                    // Because of race condition between:
                    // 1. releasing inputChannelsWithData lock in this method and reaching this place
                    // 2. empty data notification that re-enqueues a channel
                    // we can end up with moreAvailable flag set to true, while we expect no more data.
                    checkState(!moreAvailable || !pollNextBufferOrEvent().isPresent());
                    moreAvailable = false;
                    hasReceivedAllEndOfPartitionEvents = true;
                }

                currentChannel.notifySubpartitionConsumed();

                currentChannel.releaseAllResources();
            }

            return Optional.of(new BufferOrEvent(event, currentChannel.getChannelIndex(), moreAvailable));
        }
    }

输出数据

  • 注意,打印输出的数据,是有规则的,按partition打印的,而且,parition打印的顺序,是在window时按key去重,此时没有排序,然后发送给sink进行打印输出
--------------------------
partition:0
WordWithCount(2,1)
WordWithCount(6,1)
WordWithCount(4,1)
WordWithCount(3,1)

partition:1
WordWithCount(1,1)
WordWithCount(10,1)
WordWithCount(8,1)
WordWithCount(5,1)

partition:2
WordWithCount(7,1)
WordWithCount(9,1)


``

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
9天前
|
缓存 监控 数据处理
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
99 28
|
3月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
125 0
|
3月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
189 0
|
2月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
229 61
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
108 1
|
3月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
54 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1604 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
11天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
145 0
Flink CDC 在阿里云实时计算Flink版的云上实践

热门文章

最新文章