实时计算 Flink版操作报错合集之整库同步mysql到starRock提交任务异常,该如何处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:我使用Flink CDC 3.0对mysql整库同步到starrock中,任务挂掉是为啥?

我使用Flink CDC 3.0对mysql整库同步到starrock中,现在任务已经创建好了,mysql的表和数据都同步到starrock中了,现在发现的问题是,我在源表加了新字段,接着flink的任务就挂掉了是为什么?



参考答案:

将时间调长一点。你这个问题我也遇到了 我给你解释下 FlinkCDC捕捉到了一个Schema变更的日志,然后交给StartRocks的sink去执行,StarRocks的sink执行完Schema变更后,需要向jobmaster那边去汇报这个operatorEvent,然后这个汇报超时了:

超时的原因可能是StarRocks更新schema花费的时间太长了,jobmanger等的时间是默认的时间pekko.ask.timeout=10s,但是StarRocks还没更新列成功,这时JobManager就会抛出异常通信超时。

你尝试修改pekko.ask.timeout这个参数为120s,不过当JobManager等待StarRocks的sink汇报operatorEvent的过程中JobManager的resutapi是无法访问的,这个会引起Flink任务状态不准确的问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592268



问题二:flink cdc 这个错是什么问题导致的呢?

flink cdc insert-only records but DataStream API record contains: UPDATE_BEFORE 这个错是什么问题导致的呢?



参考答案:

在 Apache Flink CDC 的应用场景中,如果配置为仅处理 INSERT 操作(insert-only mode),但在 DataStream API 中仍收到了 UPDATE_BEFORE 类型的记录,这可能由以下几个原因造成:

  1. 配置问题:
  • 确保在设置 Flink CDC 连接器时指定了正确的同步模式,例如在使用 MySQL CDC 连接器时,应将 sync-mode 参数设置为 SYNC_MODE_INSERT_ONLY。这样,连接器只会生成 INSERT 类型的事件,而忽略 UPDATE 和 DELETE 操作。
  1. 源表变更:
  • 检查是否有变更发生在 Flink CDC 作业运行期间,比如表结构或 CDC 配置的变更,导致原本应该是 INSERT_ONLY 的表出现了 UPDATE_BEFORE 记录。
  1. 旧数据重复处理:
  • 如果作业曾经使用过全量同步模式,后来改为 INSERT_ONLY 模式,但历史数据中的 UPDATE_BEFORE 记录仍然存在于 Kafka 等中间存储中,Flink 作业重新消费时可能会再次处理这些记录。
  1. 连接器内部逻辑错误:
  • 极少数情况下,可能是连接器自身逻辑的 bug 导致,即使在 INSERT_ONLY 模式下也会错误地生成了 UPDATE_BEFORE 记录。这种情况下,建议检查连接器版本并查看官方文档或 issue tracker,如有必要升级到最新稳定版本或联系社区寻求帮助。
  1. 其他组件配置影响:
  • 如果使用了其他中间组件(如 Debezium 等),也需要检查这些组件的配置是否与 Flink CDC 的 INSERT_ONLY 模式相匹配。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592267



问题三:Flink CDC里 flink集群jps命令 报错怎么办?

Flink CDC里 flink集群jps命令 报错java.lang.OutOfMemoryError: unable to create new native thread 内存不足无法创建新的进程 我看了下机器内存情况 好像确实不多了 但是buffer 和available里面有 是不是没释放啊 ?



参考答案:

可能的原因

OutOfMemoryError: unable to create new native thread出现的情况有两种:

  1. 服务器剩余内存不足(非JVM内存),不能创建新的线程
  2. 超出服务器用户最大进程限制:
    ulimit -u。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592258



问题四:有人用过Flink CDC 3.0版本的整库同步吗?

有人用过Flink CDC 3.0版本的整库同步吗?我用Flink CDC3.0整库同步mysql到starRock提交任务异常,有人遇到过这个问题吗?



参考答案:

先保持原来的参数,任务写到另外的文件里。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592256



问题五:Flink CDC里没有报错,但是一直监听不到数据,是需要什么参数配置吗 ?

Flink CDC里使用flinksql oracle cdc 代码正常起来,没有报错,但是一直监听不到数据,是需要什么参数配置吗 ?一直捕获不到数据,打印到控制台也没有什么输出,建表语句是这个CREATE TABLE source_order (

ID INT,

PRICE DOUBLE,

DESC STRING,

CREATE_TIME TIMESTAMP,

UPDATE_TIME TIMESTAMP

)WITH (

'connector' ='oracle-cdc',

'hostname' = '10.190.228.33',

'port' = '1521',

'username' = 'xxx',

'password' = 'xxx',

'database-name' = 'xxx',

'schema-name' = 'xxx',

'table-name' ='T_ORDER',

'debezium.log.database.tablename.case.insensitive'='false',

'debezium.log.mining.strategy' = 'online_catalog',

'debezium.log.mining.continuous.mine' = 'true'

)



参考答案:

试一下这个'debezium.database.tablename.case.insensitive'='false',

'debezium.database.serverTimezone'='Asia/Shanghai',

'debezium.log.mining.strategy'='online_catalog'或者自己在工具中debug一下cdc源码,看看是哪儿没获取到日志。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592255

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1163 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
185 0
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
155 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
82 1
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
128 4
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
51 0
|
3月前
|
机器学习/深度学习 运维 监控
阿里云实时计算Flink版体验评测
阿里云实时计算Flink版提供了完善的产品内引导和丰富文档,使初学者也能快速上手。产品界面引导清晰,内置模板简化了流处理任务。官方文档全面,涵盖配置、开发、调优等内容。此外,该产品在数据开发和运维方面表现优秀,支持灵活的作业开发和自动化运维。未来可增强复杂事件处理、实时可视化展示及机器学习支持,进一步提升用户体验。作为阿里云大数据体系的一部分,它能与DataWorks、MaxCompute等产品无缝联动,构建完整的实时数据处理平台。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多
    下一篇
    DataWorks