• 第一个特点是开盘的时间固定,大量业务在收盘后数据量会大幅减少,甚至有一些业务在收盘后不再产 生新的数据。为了节约资源,需要根据实际情况对那些与开盘时间紧密相关的任务设置启停时间;
• 第二个特点是金融数据的重要性,大量场景下不允许数据偏差存在。针对数据可靠性要求极高的特征, 需要对大量实时任务设置夜间数据修正的离线任务,保证数据的正确性。
以上内容摘自《Apache Flink 案例集(2022版)》电子书,点击https://developer.aliyun.com/ebook/download/7718 可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。