Java数据结构与算法分析(七)二叉树

简介: 二叉树是一棵特殊的树,其结构简单但很重要。二叉树的特点是每个节点最多有两棵子树,并且有左右之分。

GitHub源码分享

项目主页:https://github.com/gozhuyinglong/blog-demos
本文源码:https://github.com/gozhuyinglong/blog-demos/tree/main/java-data-structures

1. 二叉树(Binary Tree)

二叉树是一棵特殊的,其结构简单但很重要。二叉树的特点是每个节点最多有两棵子树,并且有左右之分。

  • 满二叉树
    如果一棵二叉树的所有叶子节点都在最后一层,称为满二叉树。满二叉树的结点总数 = $2^n-1$ (n为层数)。如下图二叉是的层数为3,其结点总数为$2^3-1=7$
    满二叉树
  • 完全二叉树
    一棵深度为k的有n个结点的二叉树,对树中的节点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。显示下图中a和b是完全二叉树,而c不是完全二叉树(倒数第二层不连续)

完全二叉树

小结:一棵满二叉树一定是一棵完全二叉树;而一棵完全二叉树不一定是满二叉树。

2. 二叉树的五种形态

二叉树是递归定义的,其节点有左右子树之分,逻辑上二叉树有五种基本形态:

二叉树的五种形态

  • 空二叉树(图a)
  • 只有一个根节点的二叉树(图b)
  • 只有左子树(图c)
  • 只有右子树(图d)
  • 完全二叉树(图e)

3. 二叉树的遍历(前序、中序、后序)

  • 前序遍历:先输出父节点,再遍历左子树,最后遍历右子树。
  • 中序遍历:先遍历左子树,再输出父节点,最后遍历右子树。
  • 后序遍历:先遍历左子树,再遍历右子树,最后输出父节点。

小结:用输出父节点的顺序来判断是前序、中序还是后序遍历

4. 代码实现

通过Java代码实现下图中二叉树,并通过三种方式遍历该二叉树(前序、中序、后序)。

二叉树

Node类为节点类,其中element表示节点元素,left为左子节点,right为右子节点。

BinaryTree类实现二叉树的具体操作,如前序遍历、中序遍历、后序遍历。

public class BinaryTreeDemo {
   
   

    public static void main(String[] args) {
   
   

        BinaryTree tree = new BinaryTree();

        Node a = new Node("A");
        Node b = new Node("B");
        Node c = new Node("C");
        Node d = new Node("D");
        Node e = new Node("E");
        Node f = new Node("F");
        Node g = new Node("G");
        Node h = new Node("H");
        Node i = new Node("I");

        tree.setRoot(a);
        a.left = b;
        a.right = c;
        b.left = d;
        b.right = e;
        d.left = h;
        c.left = f;
        c.right = g;
        g.right = i;

        System.out.println("---------------前序遍历");
        tree.preOrder();
        System.out.println("---------------中序遍历");
        tree.inOrder();
        System.out.println("---------------后序遍历");
        tree.postOrder();

    }

    private static class BinaryTree {
   
   

        private Node root; // 根

        public void setRoot(Node root) {
   
   
            this.root = root;
        }

        /**
         * 前序遍历
         */
        public void preOrder() {
   
   
            preOrder(root, 0);
        }

        /**
         * 前序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void preOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 输出当前节点
            this.print(node, depth);

            // 递归左子节点
            if (node.left != null) {
   
   
                preOrder(node.left, depth + 1);
            }

            // 递归右子节点
            if (node.right != null) {
   
   
                preOrder(node.right, depth + 1);
            }

        }

        /**
         * 中序遍历
         */
        public void inOrder() {
   
   
            inOrder(root, 0);
        }

        /**
         * 中序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void inOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                inOrder(node.left, depth + 1);
            }

            // 输出当前节点
            this.print(node, depth);

            // 递归右子节点
            if (node.right != null) {
   
   
                inOrder(node.right, depth + 1);
            }

        }

        /**
         * 后序遍历
         */
        public void postOrder() {
   
   
            postOrder(root, 0);
        }

        /**
         * 后序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void postOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                postOrder(node.left, depth + 1);
            }

            // 递归右子节点
            if (node.right != null) {
   
   
                postOrder(node.right, depth + 1);
            }

            // 输出当前节点
            this.print(node, depth);

        }

        /**
         * 按照层级输出节点元素
         *
         * @param node
         * @param depth
         */
        private void print(Node node, int depth) {
   
   
            StringBuilder t = new StringBuilder();
            for (int i = 0; i < depth; i++) {
   
   
                t.append("\t");
            }
            System.out.printf("%s%s\n", t.toString(), node.element);
        }
    }

    private static class Node {
   
   
        private final Object element; // 节点元素
        private Node left; // 左子节点
        private Node right; // 右子节点

        public Node(Object element) {
   
   
            this.element = element;
        }
    }
}

输出结果:

---------------前序遍历
A
    B
        D
            H
        E
    C
        F
        G
            I
---------------中序遍历
            H
        D
    B
        E
A
        F
    C
        G
            I
---------------后序遍历
            H
        D
        E
    B
        F
            I
        G
    C
A
相关文章
|
2月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
288 35
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
2月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
4月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
159 0
|
5月前
|
机器学习/深度学习 算法 Java
Java实现林火蔓延路径算法
记录正在进行的森林防火项目中林火蔓延功能,本篇文章可以较好的实现森林防火蔓延,但还存在很多不足,如:很多参数只能使用默认值,所以蔓延范围仅供参考。(如果底层设备获取的数据充足,那当我没说)。注:因林火蔓延涉及因素太多,如静可燃物载量、矿质阻尼系数等存在估值,所以得出的结果仅供参考。
81 4
|
5月前
|
存储 监控 算法
企业上网监控场景下布隆过滤器的 Java 算法构建及其性能优化研究
布隆过滤器是一种高效的数据结构,广泛应用于企业上网监控系统中,用于快速判断员工访问的网址是否为违规站点。相比传统哈希表,它具有更低的内存占用和更快的查询速度,支持实时拦截、动态更新和资源压缩,有效提升系统性能并降低成本。
180 0
|
5月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
179 1
|
6月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
419 58
|
6月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
316 3
|
7月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
305 0