Python爬虫技术与数据可视化:Numpy、pandas、Matplotlib的黄金组合

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Python爬虫技术与数据可视化:Numpy、pandas、Matplotlib的黄金组合

前言
在当今信息爆炸的时代,数据已成为企业决策和发展的关键。而互联网作为信息的主要来源,网页中蕴含着大量的数据等待被挖掘。Python爬虫技术和数据可视化工具的结合,为我们提供了一个强大的工具箱,可以帮助我们从网络中抓取数据,并将其可视化,以便更好地理解和利用这些数据。本文将以爬取汽车之家网站上的新能源汽车数据为例,介绍如何利用Python爬虫技术和数据可视化工具实现数据的获取和分析。
第一部分:爬虫技术初探
首先,让我们来了解一下Python爬虫技术的基本原理。爬虫技术,顾名思义,就是像蜘蛛一样在互联网上爬取信息的技术。在Python中,有一些强大的库可以帮助我们实现这一目标,比如Requests、Beautiful Soup和Scrapy等。
1.1 Requests库
Requests库是Python中最常用的HTTP库之一,它可以轻松地发送HTTP请求,并且支持多种HTTP方法,比如GET、POST等。使用Requests库,我们可以模拟浏览器发送请求,从而获取网页上的数据。
1.2 Beautiful Soup库
Beautiful Soup库是Python中用于解析HTML和XML等文档的库,它可以将复杂的网页结构转换为一个易于操作的树形结构,从而方便我们提取所需的信息。
1.3 实战:爬取汽车之家新能源汽车数据
现在,让我们以爬取汽车之家新能源汽车数据为例,来演示一下爬虫技术的具体应用。
```// 要访问的目标页面
string targetUrl = "http://httpbin.org/ip";

// 代理服务器(产品官网 www.16yun.cn)
string proxyHost = "http://t.16yun.cn";
string proxyPort = "31111";

// 代理验证信息
string proxyUser = "username";
string proxyPass = "password";

// 设置代理服务器
WebProxy proxy = new WebProxy(string.Format("{0}:{1}", proxyHost, proxyPort), true);

ServicePointManager.Expect100Continue = false;

var request = WebRequest.Create(targetUrl) as HttpWebRequest;

request.AllowAutoRedirect = true;
request.KeepAlive = true;
request.Method = "GET";
request.Proxy = proxy;

//request.Proxy.Credentials = CredentialCache.DefaultCredentials;

request.Proxy.Credentials = new System.Net.NetworkCredential(proxyUser, proxyPass);

// 设置Proxy Tunnel
// Random ran=new Random();
// int tunnel =ran.Next(1,10000);
// request.Headers.Add("Proxy-Tunnel", String.valueOf(tunnel));

//request.Timeout = 20000;
//request.ServicePoint.ConnectionLimit = 512;
//request.UserAgent = "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.82 Safari/537.36";
//request.Headers.Add("Cache-Control", "max-age=0");
//request.Headers.Add("DNT", "1");

//String encoded = System.Convert.ToBase64String(System.Text.Encoding.GetEncoding("ISO-8859-1").GetBytes(proxyUser + ":" + proxyPass));
//request.Headers.Add("Proxy-Authorization", "Basic " + encoded);

using (var response = request.GetResponse() as HttpWebResponse)
using (var sr = new StreamReader(response.GetResponseStream(), Encoding.UTF8))
{
string htmlStr = sr.ReadToEnd();
}

通过上述代码,我们可以轻松地爬取到汽车之家网站上关于新能源汽车的基本信息,比如车型和价格等。
第二部分:数据处理与分析
接下来,让我们使用Numpy和pandas这两个强大的库来对爬取到的数据进行处理与分析。
2.1 Numpy库
Numpy库是Python中用于科学计算的核心库之一,它提供了高效的数组操作功能,可以帮助我们进行各种数值计算。
2.2 pandas库
pandas库是Python中用于数据分析的重要库,它提供了强大的数据结构和数据操作功能,可以帮助我们轻松地处理各种数据,比如读取、清洗、转换和分析等。
2.3 实战:数据处理与分析
现在,让我们使用Numpy和pandas库对爬取到的汽车数据进行处理与分析。
```import numpy as np
import pandas as pd

# 创建DataFrame对象
df = pd.DataFrame(cars)

# 数据清洗
df['price'] = df['price'].str.replace('万', '').astype(float)

# 数据分析
mean_price = np.mean(df['price'])
max_price = np.max(df['price'])
min_price = np.min(df['price'])

# 打印分析结果
print("平均价格:", mean_price, "万元")
print("最高价格:", max_price, "万元")
print("最低价格:", min_price, "万元")

通过上述代码,我们可以计算出爬取到的新能源汽车数据的平均价格、最高价格和最低价格等信息。
第三部分:数据可视化
最后,让我们使用Matplotlib库将分析结果可视化,以便更直观地展示数据。
3.1 Matplotlib库
Matplotlib库是Python中用于绘制图表的经典库之一,它提供了丰富的绘图功能,可以绘制各种类型的图表,比如折线图、柱状图、散点图等。
3.2 实战:数据可视化
现在,让我们使用Matplotlib库将分析结果可视化。
```import matplotlib.pyplot as plt

绘制柱状图

plt.figure(figsize=(10, 6))
plt.bar(df['name'], df['price'], color='skyblue')
plt.xlabel('车型')
plt.ylabel('价格(万元)')
plt.title('新能源汽车价格分布图')
plt.xticks(rotation=45)
plt.show()
```
通过上述代码,我们可以绘制出新能源汽车价格分布图,直观地展示不同车型的价格情况。
结语
通过本文的介绍,相信大家已经对Python爬虫技术与数据可视化有了更深入的理解。爬虫技术可以帮助我们轻松地获取互联网上的数据,而数据可视化则可以帮助我们更直观地理解和分析数据。结合Numpy、pandas和Matplotlib这三大神器,我们可以轻松地实现数据的爬取、处理和可视化,为我们的工作和生活带来更多的便利与乐趣。让我们一起用技术的力量,创造更美好的未来吧!

相关文章
|
22天前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
29 0
|
17天前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【10月更文挑战第4天】在数据科学领域,Pandas和NumPy是每位数据科学家不可或缺的秘密武器。Pandas凭借其DataFrame和Series数据结构,提供高效灵活的数据处理工具;NumPy则以其强大的N维数组对象ndarray和丰富的数学函数库,成为科学计算的基石。本文通过实战示例,展示了两者如何携手助力数据科学家在数据探索中披荆斩棘。Pandas擅长数据清洗、转换和结构化操作,NumPy则专注于数值计算与矩阵运算。通过结合使用,可以实现高效的数据处理与分析,大幅提升工作效率与数据处理深度。
29 4
|
16天前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
38 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
23天前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
47 3
|
23天前
|
数据采集 数据挖掘 大数据
【Python篇】详细学习 pandas 和 xlrd:从零开始
【Python篇】详细学习 pandas 和 xlrd:从零开始
51 2
|
18天前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
59 0
|
21天前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【7月更文挑战第14天】Pandas与NumPy在数据科学中扮演关键角色。Pandas的DataFrame和Series提供高效数据处理,如数据清洗、转换,而NumPy则以ndarray为基础进行数值计算和矩阵操作。两者结合,从数据预处理到数值分析,形成强大工具组合。示例展示了填充缺失值、类型转换、矩阵乘法、标准化等操作,体现其在实际项目中的协同效用。掌握这两者,能提升数据科学家的效能和分析深度。**
37 0
|
13天前
|
存储 程序员 开发者
Python编程基础:从入门到实践
【10月更文挑战第8天】在本文中,我们将一起探索Python编程的奇妙世界。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的信息。我们将从Python的基本概念开始,然后逐步深入到更复杂的主题,如数据结构、函数和类。最后,我们将通过一些实际的代码示例来巩固我们的知识。让我们一起开始这段Python编程之旅吧!
|
1天前
|
弹性计算 安全 小程序
编程之美:Python让你领略浪漫星空下的流星雨奇观
这段代码使用 Python 的 `turtle` 库实现了一个流星雨动画。程序通过创建 `Meteor` 类来生成具有随机属性的流星,包括大小、颜色、位置和速度。在无限循环中,流星不断移动并重新绘制,营造出流星雨的效果。环境需求为 Python 3.11.4 和 PyCharm 2023.2.5。
20 9
|
7天前
|
设计模式 开发者 Python
Python编程中的设计模式:从入门到精通####
【10月更文挑战第14天】 本文旨在为Python开发者提供一个关于设计模式的全面指南,通过深入浅出的方式解析常见的设计模式,帮助读者在实际项目中灵活运用这些模式以提升代码质量和可维护性。文章首先概述了设计模式的基本概念和重要性,接着逐一介绍了几种常用的设计模式,并通过具体的Python代码示例展示了它们的实际应用。无论您是Python初学者还是经验丰富的开发者,都能从本文中获得有价值的见解和实用的技巧。 ####