本人所做工作难免有不足之处欢迎私信或联系邮箱zjzqqmail@qq.com
能力说明:
精通JVM运行机制,包括类生命、内存模型、垃圾回收及JVM常见参数;能够熟练使用Runnable接口创建线程和使用ExecutorService并发执行任务、识别潜在的死锁线程问题;能够使用Synchronized关键字和atomic包控制线程的执行顺序,使用并行Fork/Join框架;能过开发使用原始版本函数式接口的代码。
能力说明:
基本的计算机知识与操作能力,具备Web基础知识,掌握Web的常见标准、常用浏览器的不同特性,掌握HTML与CSS的入门知识,可进行静态网页的制作与发布。
阿里云技能认证
详细说明
事件管理解决方案
Linux 用户必备的 8 大网站 | Linux 中国
推荐Linux性能分析的一篇论文和两本书 原创 Linux阅码场 Linux阅码场 2021-06-22 08:59
第八章 NFS文件系统:
C++primerplus
CLAID:关闭人工智能和数据收集的循环——一个用于智能边缘云和数字生物标记应用的跨平台透明计算中间件框架
基于卷积神经网络和手工特征注入的皮肤损伤图像异常检测:一种绕过皮肤镜图像预处理的方法
可训练软决策树集成的多实例学习
可分离高斯神经网络:结构、分析和函数逼近
自动驾驶汽车:理论和实践挑战
Overview of Jamming Technology for Satellite Navigation 卫星导航干扰技术综述 国防科技大学电子科学学院,长沙410000 * 应向其寄送信件的作者。 机器2023、11(7)、768;https://doi.org/10.3390/machines11070768 接收日期:2023年6月18日/修订日期:2023.7月12日/接受日期:2023:7月13日/发布日期:2023-7月22日 (本文属于自动化和控制系统部分)
基于非英语数据集的图形机器学习和集成学习方法增强文本分类和文本情感分析 摘要 近年来,机器学习方法,特别是图学习方法,在自然语言处理领域,特别是文本分类任务中取得了巨大的成果。然而,许多这样的模型在不同语言的数据集上显示出有限的泛化能力。在本研究中,我们在非英语数据集(如波斯语Digikala数据集)上研究并阐述了图形机器学习方法,该方法由用户对文本分类任务的意见组成。更具体地说,我们研究了(Pars)BERT与各种图神经网络(GNN)架构(如GCN、GAT和GIN)的不同组合,并使用集成学习方法来处理某些知名的非英语数据集上的文本分类任务。我们的分析和结果表明,应用GNN模型可以更好地捕捉文
摘要 汽车控制功能变得越来越复杂,其开发也越来越精细,这导致在开发过程中强烈需要自动化解决方案。在这里,强化学习为功能开发提供了巨大的潜力,可以以自动化的方式生成优化的控制功能。尽管它成功地部署在各种控制任务中,但在汽车行业中仍然缺乏基于强化学习的功能开发标准工具解决方案。为了解决这一差距,我们提出了一个灵活的框架,将传统的开发过程与开源的强化学习库相结合。它具有相关车辆部件的模块化物理模型、与微观交通模拟的协同模拟以生成真实场景,并实现分布式和并行训练。我们在一项可行性研究中证明了我们提出的方法的有效性,该研究旨在学习城市交通场景中电动汽车自动纵向控制的控制函数。进化的控制策略产生了一个平滑
GPU 显存释放
深度学习基础入门篇[9.3]:卷积算子:空洞卷积、分组卷积、可分离卷积、可变性卷积等详细讲解以及应用场景和应用实例剖析
JVM2
3. IO
前端面试题JavaScript
MVC
Ultralytics YOLOv8: State-of-the-Art YOLO Models,作者:Sovit Rath
操作系统
本文讲述了SpringMVC的基本概念
C++day12笔记
C++ 核心编程day01
SpringMVC的请求与响应 3-2 就业课(2.1)-SpringMVC\3-2 就业课(2.1)-SpringMVC\02-SpringMVC的请求和响应\笔记
Spring与web环境集成 3-2 就业课(2.1)-SpringMVC\3-2 就业课(2.1)-SpringMVC\01-springmvc快速入门、组件解析\笔记
Spring+SpringMVC练习 3-3 就业课(2.1)-Spring+SpringMVC综合练习\3-3 就业课(2.1)-Spring+SpringMVC综合练习\Spring+SpringMVC综合练习\笔记