一只小鱼哲
传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等方法来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。 目前,很多供电局主要通过工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息监测窃漏电情况和发现计量装置的故障。
前言 机器学习很多时候在工业场景下也会有非常好的应用。本次实验,我们就会以一个综合循环发电厂的发电数据来展示机器学习是如何应用到工业生产的实际场景中的。 本实验数据采集自 UCI 机器学习数据集中的 混合发电厂数据。
前情提要 人工智能千千万,没法落地都白干。自从上次老司机用神经网络训练了热狗识别模型以后,群众们表示想看一波更加接地气,最好是那种能10分钟上手,一辈子受用的模型。这次,我们就通过某著名电商公司的公开数据集,在阿里云大数据生态之下快速构建一个基于协同过滤的推荐系统! 推荐系统大家都不陌生,早就已经和大家的生活息息相关。
人工智能千千万,没法落地都白干。 自从上次老司机用神经网络训练了热狗识别模型以后,群众们表示想看一波更加接地气,最好是那种能10分钟上手,一辈子受用的模型。 这次,我们就通过某著名电商公司的公开数据集,在阿里云大数据生态之下快速构建一个基于协同过滤的推荐系统!
前情提要 美剧《硅谷》大家想必都没怎么看过,大家可能都不知道人工智能识别热狗曾是硅谷最赚钱的技术之一。去年 HBO 发布了官方的 Not Hotdog 应用,支持 iOS 和 Android 平台,据说是用 TensorFlow、Keras 和 React Native 打造的,但是源码没有公开。
看过美剧《硅谷》的同学都知道人工智能识别热狗曾是硅谷最赚钱的技术之一。去年 HBO 发布了官方的 Not Hotdog 应用,支持 iOS 和 Android 平台,据说是用 TensorFlow、Keras 和 React Native 打造的,但是源码没有公开。
虽然已经 9102 年了,MNIST手写数据集也早已经被各路神仙玩出了各种花样,比如其中比较秀的有用MINST训练手写日语字体的。但是目前还是很少有整体的将训练完之后的结果部署为一个可使用的服务的。大多数还是停留在最终Print出一个Accuracy。
PAI-DSW(Data science workshop)是专门为数据科学探索者们准备的云端深度学习开发环境,用户可以登录 DSW 进行代码的开发并运行工作。目前 DSW 支持了Github下载,让我们可以更加便捷的访问上面的资源.