人工智能/深度学习/多模态/NLP/机器视觉/社区 www.deepnlp.org
金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent
文生视频是AI领域热点,很多文生视频的大模型都是基于 Huggingface的 diffusers的text to video的pipeline来开发。国内外也有非常多的优秀产品如Runway AI、Pika AI 、可灵King AI、通义千问、智谱的文生视频模型等等。为了方便调用,这篇博客也尝试了使用 PyPI的text2video的python库的Wrapper类进行调用,下面会给大家介绍一下Huggingface Text to Video Pipeline的调用方式以及使用通用的text2video的python库调用方式。
伴随着生成式人工智能技术发展,进2年涌现出大语言模型LLM/Agent系统/AI推理等众多方向的技术项目和论文。其中对话系统,智能体交互是用户通过UX界面和AI系统进行交互,这种交互有时候也是多模态(用户输入文字/语音/图像)等等。在调用OpenAI 的对话接口时候,有时候需要把对话结果打印出来检查是否有bug,JSON数据格式就比较难看出来了,尤其是有多角色的多轮对话。这个时候可以借助一些在线的"对话"可视化的工具 (Online Dialogue Visualization Tool) DeepNLP Dialogue Visualization Tool,方便产品经理,算法研发,学术研究