阿里云大数据Al技术
BEVFormer是一种纯视觉的自动驾驶感知算法,通过融合环视相机图像的空间和时序特征显式的生成具有强表征能力的BEV特征,并应用于下游3D检测、分割等任务,取得了SOTA的结果。
UPT是一种面向多种NLP任务的小样本学习算法,致力于利用多任务学习和预训练增强技术,在仅需要标注极少训练数据的情况下,提升大规模预训练语言模型在多种场景下的模型精度。
PAI-Diffusion系列模型,包括一系列通用场景和特定场景的文图生成模型,本⽂简要介绍PAI-Diffusion模型及其体验方式。
BladeDISC 上一次更新主要发布了 GPU AStitch 优化,方法来源于我们发表在 ASPLOS 2022上的论文AStitch。这一次,我们发布了 0.3.0 版本。
这是一种面向命名实体识别的小样本学习算法,采用两阶段的训练方法,检测文本中最有可能是命名实体的Span,并且准确判断其实体类型,在仅需要标注极少训练数据的情况下,提升预训练语言模型在命名实体识别任务上的精度。
KECP 是一种面向机器阅读理解的小样本学习算法,采用 Prompt-Tuning 作为基础学习范式,在仅需要标注极少训练数据的情况下,在给定文章中抽取满足要求的文本作为答案。
大数据&AI产品技术月刊(2022年11月),涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
刚刚结束的 2022 云栖大会上,阿里云机器学习平台 PAI 发布了在开发者服务、企业级能力、工程性能优化三个方向的一系列新特性和功能。从支撑达摩院上云,到服务金融、汽车、互联网、制造等多个行业的创新实践,机器学习 PAI 不断夯实云原生的 AI 工程平台能力。
阿里云开源大数据一直坚持兼容并蓄,百花齐放的产品理念,面向大数据的未来进行投资和发展。今年开源大数据E-MapReduce、Flink、Elasticsearch 等产品矩阵再次升级,向着开放化、现代化、智能化和云原生的高质量发展迈进。
基于阿里云强大的大数据AI一体化的平台能力,从工具层面,介绍DataWorks端到端的全链路数据开发治理平台新能力,回归工具为人服务的本质,全方位地提升一线数据开发人员/业务人员的工作效率。
阿里云ODPS全新升级,存储、调度、元数据一体化融合 ,从 Processing 升级为 Platform,即 Open Data Platform and Service。本次峰会,同步发布了新的产品能力,即MaxCompute 引擎新功能发布及Hologres 引擎新功能发布。
CV模型是业务中常见的模型,但是我们观察到UC集群中的CV类模型还有很大的GPU利用率提升空间。如果不对此进行优化,则需要大量的GPU资源才能才能满足延迟要求。本文主要介绍了CV类模型的优化总结。
EasyCV可以轻松预测图像的分割谱以及训练定制化的分割模型。本文主要介绍如何使用EasyCV实现实例分割、全景分割和语义分割,及相关算法思想。
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文将介绍使用EasyCV进行图像分割模型的训练和预测。
本文为您展示DSW Gallery的全部文章,欢迎您浏览。同时文末有动手实验有奖活动,期待您的参与!
ODPS 解决了用户多元化数据的计算需求问题,实现了存储、调度、元数据管理上的一体化架构融合,支撑交通、金融、科研、政府等多场景数据的高效处理,是目前国内最早自研、应用最为广泛的一体化大数据平台。
模型免费开放!零基础也能一键进行AI艺术创作。本⽂简要介绍ARTIST的技术解读,以及如何在EasyNLP框架中使⽤ARTIST模型。
大数据&AI产品技术月刊(2022年10月),涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
一体化大数据智能峰会上,回顾了阿里巴巴开源大数据技术十三载发展历程,从使用回馈到共建引领,兼容并蓄,持续创新。以及对开源大数据产品矩阵再次升级的分享。
在云栖大会上,阿里云机器学习PAI平台宣布集成自研深度学习框架OneFlow,进一步提升对国产算法框架的支持。PAI可以在架构上实现包括对国际主流、国内自研在内的任何第三方深度学习框架的支持。
官网发布TPC-H 30,000GB标准测试最新结果,首次参加此项评测的ODPS-Hologres以QphH超2786万分的性能结果斩获全球冠军,领先第二名23%。
贾扬清在阿里灵杰人工智能论坛上分享从技术,工程,产品的角度,讲述从实验室到产业的这些事情。
贾扬清在一体化大数据智能峰会论坛上分享立足于数据这个领域,数据和智能之间创新的火花。
11月3日,2022云栖大会上,阿里巴巴集团副总裁、阿里云计算平台事业部负责人贾扬清表示,为满足用户多元化数据计算需求,阿里云ODPS升级为一体化大数据平台。
阿里云2022金秋云创季开启,双11期间大数据&AI产品超值优惠,爆款Elasticsearch、DataWorks指定规格1元起,更有多款产品年度优惠,还可叠加阿里云双11跨品类满减优惠券,最高减2400元,欢迎您来选购!
本文整理自阿里云技术专家陈玉兆在7月17日阿里云数据湖技术专场交流会的分享。
本文整理自阿里云技术专家范佚伦在7月17日阿里云数据湖技术专场交流会的分享。
本文整理自阿里云开源大数据平台技术专家毕岩在7月17日阿里云数据湖技术专场交流会的分享。
本文将以下三个方面展开介绍:DeepRec 背景(我们为什么要做 DeepRec)、DeepRec 功能(设计动机和实现)以及DeepRec 社区(最新发布的 2206 版本主要功能)
阿里云AI技术分享会第七期《AI人像风格特效生成技术研究与应用》将在2022年10月26日晚18:00开启直播,精彩不容错过!
本⽂简要介绍CKBERT的技术解读,以及如何在EasyNLP框架、HuggingFace Models和阿里云机器学习平台PAI上使⽤CKBERT模型。
本书将分为三个主题,共11章节,适合正在向云原生转型的技术老兵,也适合刚入行正在熟悉 k8s 的小白。推荐阅读完本书后配合 SREWorks 进行实践,效果更佳。让我们共同实践,共同努力,推动云原生时代早日到来。
阿里云AI技术分享会第六期《基于深度学习的稀疏模型训练 GPU 加速》将在2022年10月19日晚18:00开启直播,精彩不容错过!
图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱,更多的是考虑边和点的概念。这里提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。本示例是使用人物关系图数据,和少量标记用户数据,基于图算法实现金融风控。
GBDT+LR模型是由Facebook于2014年提出。该模型利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当做LR模型的输入,来产生最后的预测结果。该模型能够综合利用用户、物品和上下文等多种不同的特征,生成较为全面的推荐,在CTR点击率预估场景下使用较为广泛。
GBDT+FM 模型是由 Gbdt+LR 延伸出来的模型。该模型利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当做 FM 模型的输入,来产生最后的预测结果。该模型能够综合利用用户、物品和上下文等多种不同的特征,生成较为全面的推荐,在CTR点击率预估场景下使用较为广泛。
ALS (Alternating Lease Square)交替最小二乘法是一种model based的协同过滤算法, 用于对评分矩阵进行因子分解,然后预测user对item的评分。 它通过观察到的所有用户给产品的打分,来推断每个用户的喜好并向用户推荐适合的产品。
Alink 提供了对大规模数据的高效统计,能提供数量、缺失值、最大最小值、分位数、分布直方图等各种统计指标,用户可以探索数据特征,并为特征工程提供辅助。Alink 还能无缝结合 TensorFlow Data Validation,提供数据 schema 推断、数据偏移检测等功能。
在人工智能广泛应用的今天,深度学习技术已经在各行各业起到了重要的作用。在计算机视觉领域,深度学习技术在大多数场景已经替代了传统视觉方法。如果说深度学习是一项重要的生产工具,那么数据就是不可或缺的生产资料,巧妇难为无米之炊,数据对于视觉模型生产起到了至关重要的作用。
Jupyter Notebook除了能够执行Python代码之外,还提供一些魔术命令(Magic Command)方便用户简洁地解决标准数据分析中的各种常见问题,本文介绍几个常见的魔术命令使用技巧。
阿里云AI技术分享会第五期《流批一体机器学习算法平台Alink介绍及应用》将在2022年10月12日晚18:00开启直播,精彩不容错过!
JupyterNotebook是一个用于编写Jupyter Notebook的Python环境。本文介绍Jupyter Notebook的常用使用技巧,包括shell命令,测试运行时间等使用方法。
PAI-DSW是一款云端机器学习开发IDE,为您提供交互式编程环境,适用于不同水平的开发者。本文为您介绍PAI-DSW的功能特点以及界面的基础使用。
针对在线推理场景,PAI平台提供了在线预测服务PAI-EAS(Elastic Algorithm Service),支持基于异构硬件(CPU和GPU)的模型加载和数据请求的实时响应。通过PAI-EAS,您可以将模型快速部署为RESTful API,再通过HTTP请求的方式调用该服务。您可以使用EAS提供的命令工具eascmd,来管理PAI-EAS服务。
针对在线推理场景,PAI平台提供了在线预测服务PAI-EAS(Elastic Algorithm Service),支持基于异构硬件(CPU和GPU)的模型加载和数据请求的实时响应。通过PAI-EAS,您可以将模型快速部署为RESTful API,再通过HTTP请求的方式调用该服务。您可以使用EAS提供的Python SDK,来管理PAI-EAS服务。
PAI DSW提供Python SDK来封装DSW的OpenAPI,使得用户可以用Python代码来管理DSW实例,包括创建、停止、保存、删除、列举等功能。本文也会介绍如何在独占资源组中创建实例。
介绍DSW实例如何与用户的VPC进行网络打通,支持跨VPC访问用户的数据和服务,方便和用户VPC中的系统进行集成。
大数据&AI产品技术月刊(2022年9月),涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
介绍DSW中如何使用官方镜像、自定义镜像、第三方镜像地址来启动服务。DSW环境进行定制修改之后还可以选择停机保存环境或者保存镜像到ACR镜像仓库。
DSW Gallery提供了AI研发场景下丰富的案例和解决方案,内容涵盖如: Jupyter, 数据分析,机器学习,深度学习,PAI产品说明, SDK使用说明,以及行业解决方案),支持一键在DSW中启动和运行,帮助您快速了解云原生下AI研发流程,熟练使用PAI的各种工具,提升开发效率和质量。