暂时未有相关云产品技术能力~
【公众号】美男子玩编程,关注获取海量资源~
CAN总线节点的硬件构成有两种方案:MCU控制器+独立CAN控制器+CAN收发器和带有CAN控制器的MCU+CAN收发器。
至今没有一种通信网络可以完全满足未来汽车的所有成本和性能要求,为此,汽车制造商和OEM (Original Equipment Manufacture)商仍采用多种协议(LIN、CAN和 MOST等),实现未来汽车上的连网。 美国汽车工程师协会(SAE)车辆网络委员会根据标准SAE J2057将汽车数据传输网划分为A、B、C三类。 本篇博文将对A、B、C三类总线标准以及诊断系统、多媒体系统等总线标准进行对比和介绍。
UART(Universal Asynchronous Receiver/Transmitter,通用异步收发器)是一种双向、串行、异步的通信总线,仅用一根数据接收线和一根数据发送线就能实现全双工通信。典型的串口通信使用3根线完成,分别是:发送线(TX)、接收线(RX)和地线(GND),通信时必须将双方的TX和RX交叉连接并且GND相连才可正常通信
6月9日,第四届(2018~2022)科大讯飞AI开发者大赛,正式启动! 科大讯飞联合优质企业、知名高校、融投资机构等53家合作伙伴, 围绕十大新兴产业开启算法、应用、编程赛、虚拟形象选拔、辩论赛、创意集市创意赛等108个赛道方向,覆盖了智能语音、视觉、自然语言、图文识别等人工智能热门技术,涵盖了元宇宙、农业养殖、遗址文化、生物与环保、医疗健康、地理遥感、企业数字化、智能家居、电商销售等多领域。
在ISO 11898-2和ISO 11898-3中分别规定了两种CAN总线结构(在BOSCH CAN2.0规范中,并没有关于总线拓扑结构的说明):高速CAN总线和低速CAN总线,本篇博文将详细介绍两者的特性和区别。
汽车电子控制系统主要由传感器(Sensor)、电子控制单元(Electronic Control Unit,ECU)和执行器(Actuator)组成,对被控对象(Controlled Object)进行控制。
本文将分享几种常用的CAN连接器的连线和使用方法。
CAN总线协议(Controller Area Network),控制器局域网总线,是德国BOSCH(博世)公司研发的一种串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。
在LabVIEW和单片机(Arduino)系列专栏中使用LabVIEW Interface for Arduino接口工具包实现和Arduino联控。本篇博文将拓展讲解另一款新的接口工具包实现对Arduino的控制,它就是LabVIEW LINX。 LabVIEW LINX Toolkit可支持驱动Raspberry Pi、BeagleBoard和Arduino开发板,包含数字、模拟、SPI、I2C、UART、PWM等驱动接口,非常适合创客开发实践。
汽车软件开发过程中的V模型对行业内开发者早已是司空见惯的模型,是由瀑布模型演变而来的,也是目前汽车行业运用最广的软件开发模型。由于该模型的构图形似字母V,所以俗称V模型。V模型核心思想是通过A-SPICE流程(汽车产业的软件流程改进和能力测定标准)来支持和管理整个开发流程,从需求到源代码的每个过程都有相应的测试。
镍氢电池是由氢离子和金属镍合成的一种碱性蓄电池,它的正极活性物质主要由镍制成,负极活性物质主要由贮氢合金制成。镍氢电池电量储藏比镍镉电池多30%,比镍镉电池更轻,运用寿数也更长,而且对环境无污染。镍氢电池的缺点是价格比镍镉电池要贵许多,功能比锂电池要差。
智能家居是以家为平台,兼备建筑化于一体的高效、舒适、安全、便利的家居环境。它是采用家庭控制总线、互联网、通信、人工智能、单片机、传感器等一系列高新技术将家居设备控制,安防管理生活信息及资讯管理,家居互联网通信等与我们日常生活息息相关的常用生活元素全面并缜密地结合在一起,能够高度地提升我们的日常生活质量、便利性、安全性、舒适性和丰富性,是实现真正意义上的数字化、网络化、信息化和智能化家庭的一种全新的系统。它是依托于住宅这个平台,能够科学统筹管理家居生活的各个方面,让家居生活“"智慧"起来。这个管理过程的实现要依赖于计算机技术、网络技术、通信技术和综合布线技术等关键技术。
智能农业是目前农业发展的新方向,它根据农作物的生长习性及时调整土壤状况和环境参数,以最少的投入获得最高的收益,改变了传统农业中必须依靠环境种植的弊端及粗放的生产经营管理模式,改善了农产品的质量与品质,调整了农业的产业结构,确保了农产品的总产量,高效地利用了各种各样的农业资源,可取得可观的经济效益和社会效益。
目前,国内气象站对地面气象数据的采集大多采用传统的有线方式,其布线成本高,维护不方便,尤其对于山区等一些复杂的地形来说,这种缺点更为明显。传统的无线通信方式有很多,无线电、微波、红外线、蓝牙、射频等,在某些只需简单的无线连接的应用领域对数据速率的要求并不很高,设备的功耗是更需要考虑的问题。ZigBee网络是低功耗、低成本、高可靠性的无线传感器网络,其在环境检测等领域中有着广阔的应用前景。
智能小车是以轮子作为移动机构,并且能够实现自主行驶的机器人,又被称为轮式机器人。由于具有智能化的特点,可以应用于不适合人类工作的环境中,例如灾难救援、户外探险等。智能小车有别于遥控小车,因为后者需要操作人员来控制其转向、启停和前进后退,以及控制其速度,常见的模型小车,都属于这类遥控车。智能小车,则可以通过计算机编程来实现其对行驶方向、启停以及速度的控制,无须人工干预,也可以通过修改智能小车的程序来改变它的行驶方式。 ———————————————— 版权声明:本文为CSDN博主「不脱发的程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:htt
红外测距是一种非直接接触的测量方式,由于其结构简单、抗干扰性强、成本低等优点,在测量测绘上得到广泛的运用。
超声波测距是一种传统而实用的非接触测量方法,与激光、涡流和无线电测距方法相比,具有不受外界光及电磁场等因素影响的优点,在比较恶劣的环境中也具有一定的适应能力,且结构简单、成本低,因此在工业控制、建筑测量、机器人定位方面有广泛的应用。
在多数情况下,测量温度的同时需要测量湿度,本篇博文将介绍使用DHT11温湿度传感器、Arduino Uno和LabVIEW组成温湿度测量系统,可用于粮仓等场合的温湿度监控。
本篇博文将实现LabVIEW控制Arduino采集多路DS18B20温度数值,关于LabVIEW控制Arduino在基础篇已经讲解过很多种类温度传感器的采集方法。
在之前的博文中,介绍了LabVIEW控制Arduino采集LM35温度传感器数值和LabVIEW控制Arduino采集热敏电阻温度数值的方法。本篇博文将基于热电偶搭建一款温度监控系统。
数据采集,是指从传感器和其他待测设备的模拟和数字被测单元中自动采集信息的过程。能够实现数据采集功能的系统叫作数据采集系统。
利用光敏电阻和LIAT中的光敏函数库,通过Arduino Uno控制板的模拟端口采集与光敏电阻串联电阻的分压值上传给LabVIEW软件,并除以光照系数以获得光照值,实现一个光强计的功能。
利用热敏电阻和LIAT中的热敏电阻函数节点,通过Arduino Uno控制板的模拟端口采集与热敏电阻串联电阻的分压值上传给LabVIEW软件,并除以温度系数以获得温度值,实现一个温度计的功能。
LM35 是由National Semiconductor 所生产的温度传感器,其输出电压为摄氏温度。LM35是模拟输出的温度监控芯片,其输出电压和摄氏温度成线性比列关系,是一种得到广泛使用的温度传感器。
利用LIAT中的数码管显示函数库,通过LabVIEW软件控制Arduino Uno控制板,将特定的数据显示在单个数码管上,实现数码管的滚动显示。
本篇博文将利用LIAT中的LCD显示函数库,驱动1602液晶显示屏。
本篇博文将通过LabVIEW和Arduino Uno控制板实现对单个和多个舵机转动角度的控制。
利用LIAT中的模拟采样函数库,通过Arduino Uno控制板上的模拟输入端口采集模拟信号,并上传至LabVIEW界面上显示波形,实现一个数据采集的功能。
利用LIAT中的模拟采样函数库,通过Arduino Uno控制板上的模拟输入端口采集模拟信号,并上传至LabVIEW界面上显示波形,实现一个简易示波器的功能。
利用LIAT中的RGB函数库,通过LabVIEW控制Arduino Uno控制板实现RGB调色。
利用LIAT中的模拟I/O函数库,通过LabVIEW和Arduino Uno控制板实现LED灯亮度的调节,产生灯会呼吸的效果。
利用LIAT函数库中模拟IO的功能,通过Arduino Uno控制板上模拟输入端口实现对电压的测量,并显示在LabVIEW前面板上。
利用LIAT中的数字I/O函数库,通过LabVIEW控制Arduino Uno控制板上多个管脚上LED灯,实现依次点亮,依次熄灭,形成流水灯效果。
利用LIAT中的数字I/O函数库,通过LabVIEW控制Arduino Uno控制板上D13管脚上LED灯,实现等间隔闪烁。
本专栏使用的单片机为:Arduino(本系列专栏使用Arduino UNO控制器),主要原因在于,Arduino简单易上手,老少皆宜,受众面广泛,使用Arduino作为下位机,LabVIEW作为上位机,独立开发者可以快捷开发出一套软硬件联控的演示系统。
本篇博文转载于:EDN电子技术设计,基于MOS管,提出一种可支持直流电池/电源无论正反接均可正常供电的电路方案。
本篇博文将设计一款虚拟示波器(简易版+复杂版),不依托外部设备,通过LabVIEW内置的信号发生VI,生成各类型波形,通过上位机软件可以对波形进行分析。当然,感兴趣的朋友也可以参照之前博文项目进行修改,将生成波形信号的功能,替换为采集实际设备,实现对实际设备数据的采集和分析。
之前分享过一篇关于LabVIEW采集鼠标、键盘数据的文章:LabVIEW采集鼠标、键盘数据,本篇博文将分享一个关于鼠标滚轮的有意思小技巧:操作鼠标滚轮来放大和缩小图片。
本篇博文分享一种有趣的LabVIEW编程思维:使用移位寄存器计算平均值。
Modbus只是工业控制中常用的一种协议方式,本篇博文依旧是通过串口通信的方式实现基本的Mosbus操作。
串口通信(Serial Communications)的概念非常简单,串口按位(bit)发送和接收字节的通信方式。在LabVIEW中串口通信使用范围非常广泛,例如,通过串口使用ModBus协议驱动仪器、串口驱动PLC设备等。
在LabVIEW的串口通信中,数据的发送与接收都是基于字符串控件(常量)进行的。 字符串控件(常量)有两种表现形式:正常显示和十六进制显示。
本篇博文分享LabVIEW虽然不常用但是很有意思的一个开发技巧:应用程序后台运行。运行程序后自动隐藏前面板窗口和任务栏图标。
SPI是串行外设接口(Serial Peripheral Interface)的缩写,是美国摩托罗拉公司(Motorola)最先推出的一种同步串行传输规范,也是一种单片机外设芯片串行扩展接口,是一种高速、全双工、同步通信总线,所以可以在同一时间发送和接收数据,SPI没有定义速度限制,通常能达到甚至超过10M/bps。
BootLoader程序设计是常用的嵌入式升级方案之一,通过使用UART、SPI、IIC等接口实现对嵌入式节点的远程升级。 本片博文并不是讲解如何实现BootLoader升级程序,而是讲解使用CS+ for CC进行BootLoader升级设计时开发环境的配置
在上一篇博文中,我们讲到瑞萨IDE:CS+ for CC下载、安装和基础使用,创建新工程生成示例代码后,编辑工程,提示错误信息,主要原因是新建工程后需要进行配置才可以正常进行编译和运行。
本篇博文将介绍:CS+ for CC安装和基础使用(本篇文章以:RH850 系列MCU为例)。
本篇博文分享程序设计时一个细节小技巧,在LabVIEW显示控件中内容过长设置自动滚动条。
鼠标、键盘输入数据是应用程序最基本的交互操作方式,本篇博文将分享LabVIEW如何获取这些数据的方法。
本篇博文将介绍一种简单方法,还是以我们分享的LabVIEW实现科学计算器小项目为例,将最下面的提示按钮背景设置为透明效果