能力说明:
了解Python语言的基本特性、编程环境的搭建、语法基础、算法基础等,了解Python的基本数据结构,对Python的网络编程与Web开发技术具备初步的知识,了解常用开发框架的基本特性,以及Python爬虫的基础知识。
将不定期更新关于机器学习、强化学习、数据挖掘以及NLP等领域相关知识
大语言模型的预训练[4]:指示学习Instruction Learning详解以及和Prompt工程、ICL区别
大语言模型的预训练[2]:GPT、GPT2、GPT3、GPT3.5、GPT4相关理论知识和模型实现、模型应用以及各个版本之间的区别详解
大语言模型的预训练[3]之Prompt Learning:Prompt Engineering、Answer engineering、Multi-prompt learning、Training strategy详解
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍
人工智能LLM模型:奖励模型的训练、PPO 强化学习的训练、RLHF
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法
人工智能自然语言处理:N-gram和TF-IDF模型详解
强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋
学科知识图谱学习平台项目 :技术栈Java、Neo4j、MySQL等超详细教学
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统
Linux和Windows系统下安装深度学习框架所需支持:Anaconda、Paddlepaddle、Paddlenlp、pytorch,含GPU、CPU版本详细安装过程
从零开始构建一个电影知识图谱,实现KBQA智能问答[下篇]:Apache jena SPARQL endpoint及推理、KBQA问答Demo超详细教学
从零开始构建一个电影知识图谱,实现KBQA智能问答[上篇]:本体建模、RDF、D2RQ、SPARQL endpoint与两种交互方式详细教学
从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA
领域知识图谱-中式菜谱知识图谱:实现知识图谱可视化和知识库智能问答系统(KBQA)
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)
手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等
手把手教学构建农业知识图谱:农业领域的信息检索+智能问答,命名实体识别,关系抽取,实体关系查询
手把手教学构建证券知识图谱/知识库(含码源):网页获取信息、设计图谱、Cypher查询、Neo4j关系可视化展示
知识图谱之《海贼王-ONEPICE》领域图谱项目实战(含码源):数据采集、知识存储、知识抽取、知识计算、知识应用、图谱可视化、问答系统(KBQA)等
FastGithub:github加速神器,解决github打不开、用户头像无法加载、releases无法上传下载、git-clone、git-pull、git-push失败等问题。
数据挖掘18大算法实现以及其他相关经典DM算法:决策分类,聚类,链接挖掘,关联挖掘,模式挖掘。图算法,搜索算法等
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶--案例与实践含面试必知必答[10]:模仿学习、行为克隆、逆强化学习、第三人称视角模仿学习、序列生成和聊天机器人
强化学习从基础到进阶--案例与实践含面试必知必答[9]:稀疏奖励、reward shaping、curiosity、分层强化学习HRL
强化学习从基础到进阶-常见问题和面试必知必答[8]:近端策略优化(proximal policy optimization,PPO)算法
强化学习从基础到进阶--案例与实践[8]:近端策略优化(proximal policy optimization,PPO)算法
强化学习从基础到进阶--案例与实践[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战
强化学习从基础到进阶-常见问题和面试必知必答[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系等详解
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-常见问题和面试必知必答5::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-案例与实践[4]:深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN
强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0
强化学习从基础到进阶-常见问题和面试必知必答[4]::深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN
强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战
强化学习从基础到进阶-案例与实践[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战
强化学习从基础到进阶-案例与实践[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代
强化学习从基础到进阶-常见问题和面试必知必答[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验
强化学习从基础到进阶-案例与实践[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验
全国大数据与计算智能挑战赛:面向低资源的命名实体识别baseline,排名13/64。第一名:0.68962791,基线:0.67902593 ,感兴趣小伙伴可以刷刷榜。 国防科技大学系统工程学院(大数据与决策实验室)
2023中国高校计算机大赛 — 大数据挑战赛:论文学科分类(清华大学主办)
人工智能领域:面试常见问题超全(深度学习基础、卷积模型、对抗神经网络、预训练模型、计算机视觉、自然语言处理、推荐系统、模型压缩、强化学习、元学习)
深度学习实践篇[17]:模型压缩技术、模型蒸馏算法:Patient-KD、DistilBERT、DynaBERT、TinyBERT
深度学习应用篇-元学习[16]:基于模型的元学习-Learning to Learn优化策略、Meta-Learner LSTM
深度学习应用篇-元学习[15]:基于度量的元学习:SNAIL、RN、PN、MN
深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型
深度学习应用篇-元学习[13]:元学习概念、学习期、工作原理、模型分类等