专注在大数据分布式计算、数据库及存储领域,拥有13+年大数据引擎、数据仓库、宽表引擎、平台研发经验,6年云智能大数据产品技术一号位经验,10年技术团队管理经验;云智能技术架构/云布道师; 研发阿里历代的大数据技术产品包括ODPS、DLA、ADB,最近五年主导宽表引擎研发、DLA、ADB湖仓研发;
暂时未有相关通用技术能力~
阿里云技能认证
详细说明这个周末参加了《阿里技术嘉年华》,这个可以说算是国内一流的免费交流会了。多个公司的技术牛人聚集在杭州共同探讨IT技术。当然很多是阿里的同学,不过也有百度、腾讯、网易,甚至还有小米、360、证劵交易所公司的同学。阿里提供了这个么好的舞台,非常感谢。也期待更多的公司来参加举行嘉年华。
在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop、hive、spark等。笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1、ODPS等项目,目前base在E-Mapreduce。在这,笔者尽可能梳理下hadoop的学习之路。
yarn版本的hadoop无论是从架构上面还是软件设计的层面上面都比原始的hadoop版本有较大的改进。在架构方面,我们认为yarn模式是新一代的框架,这个在官方等丛多的资料中说明得很详细了。在软件设计方面,我认为主要有以下的一些大的方面的改进:服务生命周期管理模式、事件驱动模式、状态驱动模式
目前网站的一些业务数据存在了数据库中,这些数据往往需要做进一步的分析,如:需要跟一些日志数据关联分析,或者需要进行一些如机器学习的分析。在阿里云上,目前E-Mapreduce可以满足这类进一步分析的需求。
以前一篇博客,从宏观描述了云梯1当时整体生态,年底了,笔者再梳理下软件栈,主要以开源软件为主,闭源不谈。大数据发展至今,开源软件层出不穷,也去解决了不同的问题,笔者试图去弄清楚这些,分门别类,后面也可以参照下。由于笔者知识面有限,难免会出现一些偏颇,不全,不正确,还请指正。后面也会有很多新的软件出现
E-MapReduce是构建于阿里云ECS弹性虚拟机之上,利用开源大数据生态系统,包括但不限于Hadoop、Spark、Hbase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。我们提供的软件基本都是开源的软件,会有一些性能的优化,但是绝对不引入任何不兼容的改动。