暂时未有相关云产品技术能力~
暂无个人介绍
与传统的图像处理识别技术相比,基于深度学习的目标识别技术,具有更为强大的适应性,并已在多个领域取得了较好的识别效果。在军事领域,由于存在地面战场环境复杂性和目标人为伪装等因素的影响,以及存在很多需要对较远目标识别的情况,而这些目标在识别过程中由于距离因素导致图像目标尺寸变得很小,增加了目标识别的难度。
深度学习技术在目标检测算法的应用显著提升了算法的性能。基于传统的目标检测算法对目标检测任务进行了概述,包括评价指标、公开数据集、算法框架及传统算法的缺陷。
随着人工智能、深度学习技术的快速发展,受到深度学习在自然场景图像目标检测中的成功应用的影响,许多学者尝试将深度学习方法应用于图像的目标检测中,基于卷积神经网络的目标检测成为发展趋势。
基于图像分析的植物叶部病害识别技术研究,对有效防治农作物病害的发生,提高农作物的产量、减少农药对农产品和环境的污染,均具有重要的现实意义。
作为计算机领域的一个重要的研究成果,深度卷积神经网络已经广泛用于图像分类问题。随着图像分类的准确度提高,基于卷积神经网络的图像目标检测算法已逐渐成为当前的研究热点。
车距测量技术对于减少交通安全事故,提高行车安全具有重要的意义。目前车距检测技术多是以车辆为参照进行测距,检测结果为两车的直线距离,但在弯道情况下则与实际车间距误差较大。
随着我国电网系统的不断发展,基层巡检作业负担越来越重,运维成本越来越高,如何实现输电线路部件缺陷的智能化检测变得愈发重要。同时,由于国家《新一代人工智能发展规划》的提出和国家电网"数字新基建"的部署,人工智能应用于电力设备运维的相关技术得到了快速发展,对输电线路部件视觉缺陷准确检测成为亟待解决的关键问题之一。
当前云计算正处于发展的高速阶段,由于其独特的信息服务特征深受全球用户的依赖,对其的研究与开发工作备受各国的重视。
视觉多目标跟踪是计算机视觉领域的热点问题,然而,场景中目标数量的不确定、目标之间的相互遮挡、目标特征区分度不高等多种难题导致了视觉多目标跟踪现实应用进展缓慢。近年来,随着视觉智能处理研究的不断深入,涌现出多种多样的深度学习类视觉多目标跟踪算法。
信息感知的目的是获取用户感兴趣的信息,为用户各方面的应用提供重要信息来源。信息感知最基本的功能是收集大量的数据,为了从大量数据集中分析和提取出隐含的重要信息,深度学习算法是常用的有效工具。而图像作为信息的重要载体,比起普通数据更能直观的表现出数据的信息特征,随着图像技术的发展,图像经常被用于目标的识别和信息的抽取。
表面裂缝检测是监测混凝土结构健康的一项重要任务。如果裂纹发展并继续扩展,它们会减少有效承载表面积,并且随着时间的推移会导致结构失效。裂纹检测的人工过程费时费力,且受检验人员主观判断的影响。在高层建筑和桥梁的情况下,手动检查也可能难以执行。
智能视频分析技术指计算机图像视觉分析技术,是人工智能研究的一个分支,它在图像及图像描述之间建立映射关系,从而使计算机能够通过数字图像处理和分析来理解视频画面中的内容。智能视频分析技术涉及到模式识别、机器视觉、人工智能、网络通信以及海量数据管理等技术。视频智能分析通常可以分为几部分:运动目标的识别、目标跟踪与行为理解。
近年来,深度学习逐渐成为⼈⼯智能领域的研究热点和主流发展⽅向。深度学习是由多个处理层组成的计算模型,学习具有多个抽象层次的数据表示的机器学习技术。深度学习代表了机器学习和⼈⼯智能研究的主要发展⽅向,给机器学习和计算机视觉等领域带来了⾰命性的进步。本⽂旨在分析深度学习技术的现状。
随着深度学习和计算机视觉的快速发展,各类基于卷积神经网络的目标检测算法不断地刷新标准检测数据集的最好性能成绩。目前主流的基于卷积神经网络的目标检测算法,包括各种两阶段检测器(RCNN,Fast RCNN,Faster RCNN,Mask RCNN,Trident Net)以及单阶段检测器(YOLO,SSD,Corner Net,Extreme Net)。尽管新算法不断刷新性能,但大多数目标检测算法其模型的参数动辄数十兆字节,在计算资源有限的移动终端等边缘设备中部署这样的大模型非常困难。因此,在保证一定准确率的前提下尽可能追求检测算法网络的轻量化具有重要的理论研究意义和应用价值。
针对水稻病害虫害检测精度低、速度慢、模型体量大、部署困难等问题,本研究提出了轻量化YOLOv4-GhostNet水稻病虫害识别方法: 1)利用幻象模块代替普通卷积结构,替换主干特征提取网络CSPDarkNet53,构建GhostNet特征提取结构; 2)改进YOLOv4网络的加强特征提取部分PANet结构; 3)利用迁移学习与YOLOv4网络训练技巧; 4)模型对水稻病虫害检测的平均精确度达到89.91%,检测速度可达每秒34.51 帧,体量缩减为42.45 MB; 5)与YOLOv4网络相比,网络规模减小了93.88%、网络参数缩减为原来的8.05%、训练速度每秒钟提升了11.59 帧。