暂时未有相关云产品技术能力~
暂无个人介绍
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(二)
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(一)
HR-Former | 随迟但到,HRNet+Transformer轻装归来(非常值得学习!!!)(二)
HR-Former | 随迟但到,HRNet+Transformer轻装归来(非常值得学习!!!)(一)
What?UFO! | UFO-ViT用X-Norm让你的Transformer模型回归线性复杂度(二)
What?UFO! | UFO-ViT用X-Norm让你的Transformer模型回归线性复杂度(一)
详细解读 | 如何改进YOLOv3使其更好应用到小目标检测(比YOLO V4高出4%)(二)
详细解读 | 如何改进YOLOv3使其更好应用到小目标检测(比YOLO V4高出4%)(一)
Kaggle第一人 | 详细解读2021Google地标识别第一名解决方案(建议全文背诵)(二)
Kaggle第一人 | 详细解读2021Google地标识别第一名解决方案(建议全文背诵)(一)
苹果公司提出Mobile-ViT | 更小、更轻、精度更高,MobileNets或成为历史!!!(二)
苹果公司提出Mobile-ViT | 更小、更轻、精度更高,MobileNets或成为历史!!!(一)
详细分析ResNet | 用CarNet教你如何一步一步设计轻量化模型(二)
详细分析ResNet | 用CarNet教你如何一步一步设计轻量化模型(一)
快到起飞 | PP-LCNet在CPU上让模型起飞,精度提升且比MobileNetV3+快3倍
Transformer-Unet | 如何用Transformer一步一步改进 Unet?
高效Transformer | 85FPS!CNN + Transformer语义分割的又一境界,真的很快!
改进UNet | 透过UCTransNet分析ResNet+UNet是不是真的有效?(一)
详细解读TPH-YOLOv5 | 让目标检测任务中的小目标无处遁形(二)
详细解读TPH-YOLOv5 | 让目标检测任务中的小目标无处遁形(一)
部署教程 | ResNet原理+PyTorch复现+ONNX+TensorRT int8量化部署
详解分析 | ViT如何在医疗图像领域替代CNNs?
详细解读 | 如何让你的DETR目标检测模型快速收敛(二)
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
Mobile-Former | MobileNet+Transformer轻量化模型(精度速度秒杀MobileNet)(二)
Mobile-Former | MobileNet+Transformer轻量化模型(精度速度秒杀MobileNet)(一)
YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计
详细解读GraphFPN | 如何用图模型提升目标检测模型性能?
实验分析非常精彩 | Transformer中的位置嵌入到底改如何看待?(二)
实验分析非常精彩 | Transformer中的位置嵌入到底改如何看待?(一)
详细解读 Transformer的即插即用模块 | MoE插件让ViT模型更宽、更快、精度更高
超越MobileNet V3 | 详解SkipNet+Bias Loss=轻量化模型新的里程碑(二)
超越MobileNet V3 | 详解SkipNet+Bias Loss=轻量化模型新的里程碑(一)
CSL-YOLO | 超越Tiny-YOLO V4,全新设计轻量化YOLO模型实现边缘实时检测!!!(二)
CSL-YOLO | 超越Tiny-YOLO V4,全新设计轻量化YOLO模型实现边缘实时检测!!!(一)
详细解读 | Google与Waymo教你如何更好的训练目标检测模型!!!(附论文)(二)
详细解读 | Google与Waymo教你如何更好的训练目标检测模型!!!(附论文)(一)
详细解读SSPNet| 小目标检测该如何进行改进?
解读UTNet | 用于医学图像分割的混合Transformer架构(文末获取论文)
简单有效 | 详细解读Interflow用注意力机制将特征更好的融合(文末获取论文)
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(二)
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(一)
详细解读 | CVPR 2021轻量化目标检测模型MobileDets(附论文下载)(二)
详细解读 | CVPR 2021轻量化目标检测模型MobileDets(附论文下载)(一)
即插即用模块 | CompConv卷积让模型不丢精度还可以提速(附论文下载)
详细解读Google新作 | 教你How to train自己的Transfomer模型?
CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(一)
CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(二)
全新激活函数 | 详细解读:HP-x激活函数(附论文下载)(二)
全新激活函数 | 详细解读:HP-x激活函数(附论文下载)(一)