暂无个人介绍
上一章提到了整个发声与拾音及存储的原理。但是在了解ASR的过程中,发现基本上遇到的资料都避不开MFCC特征。 整个ASR的处理流程大致可以分为下图: 左侧是经典的处理流程,右侧是近期流行的流程。发生的变化是,将语言模型以下的部分变成端到端的了。 我们将语言模型以下的部分统一看成是声学模型就好。 而MFCC主要用在左侧的处理流程中,即“特征处
上一章介绍了万金油特征MFCC,相当于数据的输入已经确定了。 本章尽可能的介绍经典asr做法。其中涉及到的各种概念和思考,了解了之后,和相关专业的人交流,大概就不再迷茫了:D 传统方法也可以按 声学模型 和 语言学模型 的方式来划分。 声学模型主要的职责是,把一段音频处理成类似拼音的形式, 然后交给语言模型来猜: 能够发这些音的单词,怎么组合起来更常见一些。然后找到最可能的组合,便是asr的结
本篇开始,就进入到了asr当前的流行做法。 这里单独提到了CTC算法。 这个算法对当前asr使用deep learning的方法有重大影响。 总体感觉,写到本篇,工作量反而变得很小。因为进入deep learning时代后,神经网络模型基本都是那么几种,已经不再需要挨个详细介绍。而且看图就能理解的很明白。 所以本篇后半部分基本就是贴图了。。:D 一、CTC 在CTC之前,训练语料