自变量机器人参与成立RoboChallenge组委会 开源协作开启标准化新阶段
就在11月20日,智源研究院、智元机器人、Qwen、星海图、自变量、清华大学、西安交通大学,GOSIM 国际国内合作伙伴进一步携手,共同推动生态建设,并正式成立 RoboChallenge 组委会。这标志着具身智能真机测评的开源协作不仅迈入了标准化的新阶段,更以“开放共同体”的行业共创模式,为具身智能技术的落地与迭代注入新动能。
RocketMQ总结
本课程系统讲解人工智能基础理论与应用实践,涵盖机器学习、深度学习、自然语言处理等核心内容,结合案例分析与项目实操,帮助学习者掌握AI关键技术,提升解决实际问题的能力,适用于初学者及进阶开发者。
广告系统:广告引擎如何做到在 0.1s 内返回广告信息?
广告系统是互联网公司核心营收支柱,如Google、Facebook超80%收入来自广告。其背后依赖高性能广告引擎,实现高并发、低延迟的精准投放。本文深入解析广告引擎架构,涵盖标签检索、向量匹配、打分排序与索引优化四大关键技术,揭示如何在0.1秒内完成从请求到返回的全流程,支撑千人千面的智能广告体验。
🫗 知识蒸馏
知识蒸馏是一种模型压缩技术,通过让小模型(学生)模仿大模型(教师)的输出或中间特征,实现性能逼近甚至超越。核心方法包括软标签蒸馏、带温度的Softmax提升信息保留,以及特征层对齐。按信息访问程度分为黑盒与白盒蒸馏,广泛用于加速推理、降低资源消耗,同时提升泛化能力。
🎮 强化学习
强化学习(RL)是一种通过智能体与环境交互,基于试错和延迟奖励学习最优策略的机器学习方法。核心要素包括状态、动作、奖励、策略与价值函数。常用算法有Q-learning、策略梯度、PPO、DPO等,广泛应用于游戏、机器人及大模型对齐人类偏好(如RLHF)。其关键挑战在于平衡探索与利用、偏差与方差,并提升样本效率与训练稳定性。
🔥 高频面试题汇总
Transformer核心基于自注意力机制,通过QKV计算捕捉长距离依赖,结合多头机制增强表达能力。使用位置编码补充序列顺序信息,配合RoPE、绝对/相对编码等技术。采用RMSNorm、SwiGLU等优化架构,结合LoRA、ZeRO实现高效训练与推理。显存估算需综合参数、KV缓存、激活值等,广泛应用于生成、理解与安全对齐任务。
🚀 预训练技巧
预训练是大模型基石,涵盖混合精度、分布式训练等核心技术。混合精度提升效率与显存利用率;数据/模型/流水线并行支持超大模型训练;DeepSpeed的ZeRO优化显存,FlashAttention加速注意力计算,助力高效大规模训练。(239字)
🔤 分词器详解
分词器将文本转为模型可处理的数字序列,主流算法如BPE、WordPiece和SentencePiece各有特点:BPE高效但中文支持弱;WordPiece用于BERT,适合英文;SentencePiece语言无关,支持多语言。选择时需权衡粒度、速度与模型需求,中文推荐SentencePiece。
Chap01. 认识AI
本文介绍了AI核心概念及大模型开发原理,涵盖人工智能发展历程与Transformer神经网络的关键作用。通过注意力机制,Transformer实现对文本、图像、音频的高效处理,成为GPT等大模型的基础。大语言模型(LLM)利用其持续生成能力,逐字推理输出内容,实现连贯对话与多模态生成。