自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
7859内容
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
|
7月前
| |
来自: 数据库
阿里云DMS,身边的智能化数据分析助手
生成式AI颠覆了人机交互的传统范式,赋予每个人利用AI进行低门槛数据分析的能力。Data Fabric与生成式AI的强强联合,不仅能够实现敏捷数据交付,还有效降低了数据分析门槛,让人人都能数据分析成为可能!阿里云DMS作为阿里云统一的用数平台,在2021年初就开始探索使用Data Fabric理念构建逻辑数仓来加速企业数据价值的交付,2023年推出基于大模型构建的Data Copilot,降低用数门槛,近期我们将Notebook(分析窗口)、逻辑数仓(Data Fabric)、Data Copilot(生成式AI)进行有机组合,端到端的解决用数难题,给用户带来全新的分析体验。
|
3月前
| |
【Prompt Engineering 提示词工程指南】​文本概括、信息提取、问答、文本分类、对话、代码生成、推理​
本文介绍了使用提示词与大语言模型(LLM)交互的基础知识。通过调整参数如温度(Temperature)、最高概率词元(Top_p)、最大长度(Max Length)及停止序列(Stop Sequences),可以优化模型输出。温度参数影响结果的随机性;Top_p 控制结果的多样性;最大长度限制输出长度;停止序列确保输出符合预期结构。此外,频率惩罚(Frequency Penalty)和存在惩罚(Presence Penalty)可减少重复词汇,提升输出质量。提示词需包含明确指令、上下文信息、输入数据及输出指示,以引导模型生成理想的文本。设计提示词时应注重具体性、避免歧义,并关注模型的具体行为
|
3月前
|
2024 年 8 月暨 ACL 2024 57篇代码大模型论文精选
2024年8月中旬,国际计算语言学大会ACL在泰国曼谷举行,展示了48篇代码大模型相关论文,包括24篇主会论文和24篇findings论文。主会论文涵盖XFT、WaveCoder、DolphCoder等创新方法,findings论文则探讨了代码注释增强、自动化程序修复等主题。此外,还额外整理了9篇8月最新代码大模型论文,涉及数据集合成、安全代码生成等多个前沿方向。欲了解更多,请访问我们的综述和GitHub项目。
|
2月前
|
copilot和chatGPT的区别
比较了OpenAI开发的两个工具:ChatGPT和Copilot,指出ChatGPT主要用于自然语言交互,而Copilot专注于辅助编程,同时提到了它们的训练数据、应用场景和交互方式的不同,以及Copilot的价格信息。
Perplexideez:开源本地 AI 搜索助手,智能搜索信息来源追溯
Perplexideez 是一款开源的本地 AI 搜索助手,旨在通过智能搜索和信息来源追溯功能,提升用户的搜索体验。它支持多用户、单点登录(SSO),并提供美观的搜索结果展示。Perplexideez 基于 Postgres 数据库,集成了 Ollama 或 OpenAI 兼容的端点,使用 SearXNG 实例进行网络搜索。
从千问Agent看AI Agent——我们很强,但还有很长的路要走
本项目主要通过通义千问作为基础大模型,通义Agent浏览器助手实现网页和PDF材料,以帮助您快速了解多个页面的内容,总结您浏览过的内容,并减少繁琐的文字工作。实现数据分析与可视化、处理文件等的代码解释器功能。
免费试用