微服务引擎

首页 标签 微服务引擎
# 微服务引擎 #
关注
8227内容
【机器学习】平均绝对误差 (MAE) 与均方误差 (MSE) 有什么区别?
【5月更文挑战第17天】【机器学习】平均绝对误差 (MAE) 与均方误差 (MSE) 有什么区别?
字节面试:聊聊 CAP 定理?哪些中间件是AP? 哪些是CP? 说说 为什么?
45岁老架构师尼恩在其读者交流群中分享了关于CAP定理的重要面试题及其解析,包括CAP定理的基本概念、CAP三要素之间的关系,以及如何在分布式系统设计中权衡一致性和可用性。文章还详细分析了几种常见中间件(如Redis Cluster、Zookeeper、MongoDB、Cassandra、Eureka、Nacos)的CAP特性,并提供了高端面试技巧,帮助读者在面试中脱颖而出。尼恩还推荐了其团队编写的《尼恩Java面试宝典PDF》等资料,助力求职者准备面试,提升技术水平。
机器学习中准确率、精确率、召回率、误报率、漏报率、F1-Score、AP&mAP、AUC、MAE、MAPE、MSE、RMSE、R-Squared等指标的定义和说明
在机器学习和深度学习用于异常检测(Anomaly detection)、电子商务(E-commerce)、信息检索(Information retrieval, IR)等领域任务(Task)中,有很多的指标来判断机器学习和深度学习效果的好坏。这些指标有相互权衡的,有相互背向的,所以往往需要根据实际的任务和场景来选择衡量指标。本篇博文对这些指标进行一个梳理。
从云原生视角看 AI 原生应用架构的实践
本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
Dubbo学习圣经:从入门到精通 Dubbo3.0 + SpringCloud Alibaba 微服务基础框架
尼恩团队的15大技术圣经,旨在帮助开发者系统化、体系化地掌握核心技术,提升技术实力,从而在面试和工作中脱颖而出。本文介绍了如何使用Dubbo3.0与Spring Cloud Gateway进行整合,解决传统Dubbo架构缺乏HTTP入口的问题,实现高性能的微服务网关。
|
4月前
| |
来自: 云原生
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
免费试用