云原生数据仓库AnalyticDB MySQL版

首页 标签 云原生数据仓库AnalyticDB MySQL版
# 云原生数据仓库AnalyticDB MySQL版 #
关注
5421内容
DLA 分析 AnalyticDB for PostgreSQL 数据源的数据
简介 数据湖分析(Data Lake Analytics,DLA)是无服务器(Serverless)化的云上交互式查询分析服务。无需ETL,就可通过DLA在云上通过标准JDBC直接对阿里云OSS,TableStore,RDS,MongoDB等不同数据源中存储的数据进行查询和分析。
用EXP/IMP从高版本数据库导出至低版本数据库导入实验
一般来说,从低版本数据库EXP数据,导入至高版本数据库是没什么问题的,因为Oracle数据库在开发设计的时候,考虑了同以前版本的兼容。但是从高本数据库EXP导出数据,导入至低版本数据库,经常会有各种各样的问题。
11g 导出数据时的几种压缩方法
做一个简单的实验说明compress 参数的用法。compression=all:对于ALL方式,数据泵会对导出的源数据和表数据都进行压缩,顾名思义,这种方式得到的数据泵导出文件是最小的,不过用时相对也会比较长:在我这里由于数据量的关系,时间大小不具有可比性。
OLAP技术的特点
根据OLAP委员会的定义,OLAP是“使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
AnalyticDB for PostgreSQL 6 新特性解析 - Index Only Scan
PG中所有的索引都是二级索引,即在进行索引查询的过程中,需要同时访问索引数据和源表数据。Index Only Scan按照字面意思理解,即在查询过程中只需要扫描索引数据。这种扫描方式需要一个前提就是索引中包含了查询所需要的所有数据(也叫覆盖索引),如出现在SELECT, WHERE, ORDER BY中所引用的列。
数仓系列 | Flink 窗口的应用与实现
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、OPPO 大数据平台研发负责人张俊老师分享。主要内容如下: 1. 整体思路与学习路径 2. 应用场景与编程模型 3. 工作流程与实现机制
Druid、ClickHouse、Doris、StarRocks 的区别与分析
本文对比了 Druid、ClickHouse、Doris 和 StarRocks 四款大数据分析引擎。它们均为 OLAP 引擎,采用列式存储和分布式架构,适用于海量数据分析。Druid 擅长实时分析与高并发查询;ClickHouse 以超高性能著称,适合复杂查询;Doris 提供易用的 SQL 接口,性能均衡;StarRocks 则以其极速查询和实时更新能力脱颖而出。各引擎在数据模型、查询性能、数据更新和存储方面存在差异,适用于不同的业务场景。选择时需根据具体需求综合考虑。
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
数据湖与数据仓库各有优劣,湖仓一体架构成为趋势。本文解析二者核心差异、适用场景及治理方案,助你选型落地。
2万字揭秘阿里巴巴数据治理平台DataWorks建设实践
阿里巴巴一直将数据作为自己的核心资产与能力之一,从最早的淘宝、天猫等电商业务,到后续的优酷、高德、菜鸟等板块,DataWorks、MaxCompute、Hologres等产品用一套技术体系来支持不同业务的发展与创新,为企业带来整体的“数据繁荣”。 数据繁荣为我们带来了红利,同时也带动了各类数据治理需求的井喷,特别是降本等需求的不断出现,阿里云DataWorks团队将13年的产品建设经验整理成最佳实践,从数据生产规范性治理、数据生产稳定性治理、数据生产质量治理、数据应用提效治理、数据安全管控治理、数据成本治理、数据治理组织架构及文化建设等7个方面为大家揭秘数据治理平台建设实践
免费试用