Spark

首页 标签 Spark
# Spark #
关注
9112内容
探秘Hadoop生态10:Spark架构解析以及流式计算原理
导语 spark 已经成为广告、报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家。
MongoDB Spark Connector 实战指南
Why Spark with MongoDB? 高性能,官方号称 100x faster,因为可以全内存运行,性能提升肯定是很明显的 简单易用,支持 Java、Python、Scala、SQL 等多种语言,使得构建分析应用非常简单 统一构建 ,支持多种数据源,通过 Spark RDD 屏蔽...
在CloudEdge中,通过ES实践解决ElasticLog产品问题
2018 Elastic Meetup南京交流会,由赵伟带来以“ElasticLog with ES in CloudEdge”为题的演讲。本文首先介绍了CloudEdge与ElasticLog是什么,其次介绍了产品的构架图以及ES的作用,最后介绍了ES在实践过程中需要设计Index、分配Shard、快速将Spark里数据写入ES中和数据去重。
SparkSQL(Spark-1.4.0)实战系列(一)——DataFrames基础
主要内容 本教程中所有例子跑在Spark-1.4.0集群上 DataFrames简介 DataFrame基本操作实战 DataFrames简介 本文部分内容译自https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
emacs+ensime+sbt打造spark源码阅读环境
Scala越来越流行, Spark也愈来愈红火, 对spark的代码进行走读也成了一个很普遍的行为。不巧的是,当前java社区中很流行的ide如eclipse,netbeans对scala的支持都不算太好。在这种情况下不得不想到编辑器之神emacs,利用emacs+ensime来打造scala编程环
Hadoop summit 2015 实时计算
有幸参加了6月9号到6月11号在圣何塞举办Hadoop summit 2015,主要关注了实时计算相关的topic。 本次参会的主要感受是:实时处理成为各个公司的标配,OLAP是基本需求。 下面我主要分享如下三个议题: 实时计算框架(主要是storm,spark主题太少,涉及实时计算的基本没有
spark submit参数及调优
spark submit参数介绍你可以通过spark-submit --help或者spark-shell --help来查看这些参数。使用格式: ./bin/spark-submit \ --class \ --master \ --deploy-mode \ --conf = \ .
利用Spark Streaming实现分布式采集系统
之前我在微信朋友圈发了一段话,说明Spark Streaming 不仅仅是流式计算,也是一类通用的模式,可以让你只关注业务逻辑而无需关注分布式相关的问题而迅速解决业务问题.
免费试用