说说MQ在你项目中的应用(二)商品支付
本文总结了消息队列(MQ)在支付订单业务中的应用,重点分析了RabbitMQ的优势。通过异步处理、系统解耦和流量削峰等功能,RabbitMQ确保了支付流程的高效与稳定。具体场景包括用户下单、支付请求、商品生产和物流配送等环节。相比Kafka,RabbitMQ在低吞吐量、高实时性需求下表现更优,提供了更低延迟和更高的可靠性。
如果对方没做幂等!记一次生产订单重复的反思
公司旧系统中发现一个严重bug:用户支付一年服务费,系统却将有效期增加了两年。经分析,原因是消息队列(MQ)向第三方服务发送了两次消息,且该接口未实现幂等性控制。此问题可能导致财务损失和信誉受损。解决方案包括:生产者端通过请求频率限制、幂等键等防重措施;消费者端利用缓存和数据库确保幂等性;消息队列层配置去重功能、TTL和死信队列等。
MQ四兄弟:如何保证消息可靠性
本文介绍了RabbitMQ、RocketMQ、Kafka和Pulsar四种消息中间件的可靠性机制。这些中间件通过以下几种方式确保消息的可靠传输:1. 消息持久化,确保消息在重启后不会丢失;2. 确认机制,保证消息从生产者到消费者都被成功处理;3. 重试机制,处理失败后的重试;4. 死信队列,处理无法消费的消息。每种中间件的具体实现略有不同,但核心思想相似,都是从生产者、中间件本身和消费者三个角度来保障消息的可靠性。
MQ四兄弟:如何保证消息顺序性
在分布式系统中,消息队列(MQ)是确保组件间高效通信的关键。RabbitMQ、RocketMQ、Kafka和Pulsar通过不同机制保证消息顺序性:RabbitMQ依赖单一队列和消费者模式;RocketMQ使用MessageQueueSelector;Kafka基于Partition和Key;Pulsar通过分区主题和键路由。这些系统的核心思想是将相同特征的消息发送到同一队列或分区,并按先进先出原则消费,从而确保消息顺序性。
消息队列 MQ 性能大揭秘
本文对比了RabbitMQ、RocketMQ、Kafka和Pulsar四款消息队列的性能。RabbitMQ的吞吐量为万级,延迟在低吞吐量时可低至微秒级;高吞吐量下延迟显著上升。RocketMQ官方宣称支持万亿级吞吐量,实际测试中可达百万级TPS,延迟为毫秒级。Kafka和Pulsar的吞吐量均为百万级,Kafka延迟低至2ms,Pulsar延迟约10ms。总体来看,Kafka在高吞吐量下表现最优,而RabbitMQ适合对速度与可靠性要求高的低吞吐量场景。
2024最全RocketMQ集群方案汇总
在研究RocketMQ集群方案时,发现网上存在诸多不一致之处,如组件包含NameServer、Broker、Proxy等。通过查阅官方文档,了解到v4.x和v5.x版本的差异。v4.x部署模式包括单主、多主、多主多从(异步复制、同步双写),而v5.x新增Local与Cluster模式,主要区别在于Broker和Proxy是否同进程部署。Local模式适合平滑升级,Cluster模式适合高可用需求。不同模式下,集群部署方案大致相同,涵盖单主、多主、多主多从等模式,以满足不同的高可用性和性能需求。
MQ四兄弟:如何实现延时消息
本文介绍了几种常见的消息队列系统(RabbitMQ、RocketMQ、Kafka和Pulsar)实现延时消息的方式。RabbitMQ通过死信队列或延时插件实现;RocketMQ内置延时消息支持,可通过设置`delayTimeLevel`属性实现;Kafka不直接支持延时消息,但可以通过时间戳、延时Topic、Kafka Streams等方法间接实现;Pulsar自带延时消息功能,提供`deliverAfter`和`deliverAt`两种方式。每种方案各有优劣,适用于不同的应用场景。
2024最全RabbitMQ集群方案汇总
本文梳理了RabbitMQ集群的几种方案,主要包括普通集群、镜像集群(高可用)、Quorum队列(仲裁队列)、Streams集群模式(高可用+负载均衡)和插件方式。重点介绍了每种方案的特点、优缺点及适用场景。搭建步骤包括安装Erlang和RabbitMQ、配置集群节点、修改hosts文件、配置Erlang Cookie、启动独立节点并创建集群,以及配置镜像队列以提高可用性和容错性。推荐使用Quorum队列与Streams模式,其中Quorum队列适合高可用集群,Streams模式则同时支持高可用和负载均衡。此外,还有Shovel和Federation插件可用于特定场景下的集群搭建。
被问到MQ消息已丢失,该如何处理?
在分布式系统中,消息中间件(如RabbitMQ、Kafka等)用于解耦生产者和消费者,确保数据传输的可靠性和顺序性。尽管有多种措施防止消息丢失,如消息持久化、手动确认机制和重试机制,但消息丢失仍可能发生。本文探讨了四种常见丢失场景及补救措施:1. 生产者发送消息失败;2. 消息在传输过程中丢失;3. 消息中间件内部丢失;4. 消费者未处理完消息前丢失。针对每种场景,提出了相应的解决方案,如消息重发、本地存储、日志记录、高可用配置、死信队列等,以确保系统的可靠性和稳定性。