PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4721内容
|
20天前
| |
基于openi平台免费华为昇腾910B芯片部署qwen2.5 Instruct 14B大模型
基于OpenI平台和华为昇腾910B芯片,本方案详细介绍了如何免费部署Qwen-2.5 Instruct 14B大模型。涵盖准备工作、模型适配、部署步骤及性能优化等内容,适用于NLP任务部署、本地化适配及实时服务化等多种应用场景。
在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
|
23天前
| |
使用Pytorch构建视觉语言模型(VLM)
视觉语言模型(Vision Language Model,VLM)正在改变计算机对视觉和文本信息的理解与交互方式。本文将介绍 VLM 的核心组件和实现细节,可以让你全面掌握这项前沿技术。我们的目标是理解并实现能够通过指令微调来执行有用任务的视觉语言模型。
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
|
26天前
| |
利用PyTorch的三元组损失Hard Triplet Loss进行嵌入模型微调
本文介绍了如何使用 PyTorch 和三元组边缘损失(Triplet Margin Loss)微调嵌入模型,详细讲解了实现细节和代码示例。
|
27天前
|
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
|
1月前
| |
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
免费试用