SpringBoot3.x和OCR构建车牌识别系统
本文介绍了一个基于Java SpringBoot3.x框架的车牌识别系统,详细阐述了系统的设计目标、需求分析及其实现过程。利用Tesseract OCR库和OpenCV库,实现了车牌图片的识别与处理,确保系统的高准确性和稳定性。文中还提供了具体的代码示例,展示了如何构建和优化车牌识别服务,以及如何处理特殊和异常车牌。通过实际应用案例,帮助读者理解和应用这一解决方案。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
MMMU华人团队更新Pro版!多模态基准升至史诗级难度:过滤纯文本问题、引入纯视觉问答
【10月更文挑战第12天】多模态理解是人工智能的重要研究方向,华人团队改进了现有的MMMU基准,推出MMMU-Pro,以更严格地评估模型的多模态理解和推理能力。MMMU-Pro通过过滤纯文本问题、增加候选选项和引入纯视觉问答设置,提高了评估难度。实验结果显示,模型在MMMU-Pro上的性能明显下降,但CoT推理有助于提升表现。MMMU-Pro为多模态理解提供了更严格的评估工具,但也面临一些挑战。
PaddleOCR学习笔记 01-PaddleOCR简介
《PaddleOCR学习笔记 01-PaddleOCR简介》涵盖了PaddleOCR的基础介绍、OCR技术概览、PaddleOCR的开源状态及主要算法,包括文字检测与识别算法、百度自研的SAST、SRN和End2End-PSL等,以及9m超轻量模型的介绍。适合初学者入门学习。
阿里云视觉系统使用技巧
【10月更文挑战第3天】阿里云视觉系统基于强大的计算能力和人工智能技术,为用户提供了多种图像处理与分析的解决方案。无论是图像识别、目标检测,还是视频分析,阿里云视觉系统都能帮助开发者和企业实现自动化、高效化的图像处理任务。本文将分享一些阿里云视觉系统的实用技巧,帮助你更好地使用这款强大的工具。