PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4924内容
|
8月前
|
《一文破解!自然语言处理论文实验复现秘籍》
在自然语言处理(NLP)领域,复现学术论文实验是将理论转化为实践的关键。前期需深入研读论文、收集数据与代码资源;搭建环境时要配置开发工具和预处理数据;模型训练中注重架构实现、优化器选择及训练监控;最后通过评估指标、结果对比与可视化分析确保复现成功。这一过程不仅验证研究成果,还提升技术能力,推动NLP领域的发展。
Sa2VA:别再用PS抠图了!字节跳动开源Sa2VA:一句话自动分割视频,连头发丝都精准
Sa2VA 是由字节跳动等机构联合推出的多模态大语言模型,结合 SAM2 和 LLaVA 实现对图像和视频的精确分割和对话功能。
|
8月前
| |
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(RL)是提升大型语言模型(LLM)推理能力的重要手段,尤其在复杂推理任务中表现突出。DeepSeek团队通过群组相对策略优化(GRPO)方法,在DeepSeek-Math和DeepSeek-R1模型中取得了突破性成果,显著增强了数学推理和问题解决能力。GRPO无需价值网络,采用群组采样和相对优势估计,有效解决了传统RL应用于语言模型时的挑战,提升了训练效率和稳定性。实际应用中,DeepSeek-Math和DeepSeek-R1分别在数学推理和复杂推理任务中展现了卓越性能。未来研究将聚焦于改进优势估计、自适应超参数调整及理论分析,进一步拓展语言模型的能力边界。
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
|
8月前
| |
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
|
8月前
| |
Java工程师如何理解张量?
刚接触AI和PyTorch,理解“张量(Tensor)”是入门关键。张量可类比为Java中的多维数组,但更强大,尤其在AI领域支持GPU加速、自动求导等特性。它不仅能高效存储数据,还能进行复杂运算,是深度学习的核心数据结构。掌握张量的维度、数据类型及GPU加速特性,对学习PyTorch至关重要。
Hibiki:实时语音翻译模型打破语言交流障碍!支持将语音实时翻译成其他语言的语音或文本
Hibiki 是由 Kyutai Labs 开发的实时语音翻译模型,能够将一种语言的语音实时翻译成另一种语言的语音或文本,支持高保真度和低延迟。
Sonic:自动对齐音频与唇部动作,一键合成配音动画!腾讯与浙大联合推出音频驱动肖像动画生成框架
Sonic 是由腾讯和浙江大学联合开发的音频驱动肖像动画框架,支持逼真的唇部同步、丰富的表情和头部动作、长时间稳定生成,并提供用户可调节性。
DGL(0.8.x) 技术点分析
DGL是由Amazon发布的图神经网络开源库,支持TensorFlow、PyTorch和MXNet。DGL采用消息传递范式进行图计算,包括边上计算、消息函数、点上计算、聚合与更新函数等。其架构分为顶层业务抽象、Backend多后端适配、Platform高效计算适配以及C++性能敏感功能层,确保高效、灵活的图神经网络开发。
免费试用