通义智文:文档应用赋能千行百业
通义智文是阿里巴巴推出的大规模文档处理技术体系,旨在提升生产力效率。最初作为阅读工具发布,现已发展为涵盖文档解析、理解、生成等多方面的技术平台。通义智文支持超长文档处理、多模态文本解析,并在法律、教育等领域提供专业服务。其创新算法如VGT版面分析和Layout-LM多模态模型,显著提升了文档处理精度。应用场景包括PPT创作、故事绘本生成及法律文书审查等,赋能千行百业。
RAG七十二式:2024年度RAG清单
作者遴选了2024年度典型的RAG系统和论文(含AI注解、来源、摘要信息),并于文末附上RAG综述和测试基准材料,希望阅读完本文可以帮助大家速通RAG。
《人工智能知识图谱构建与应用的最新突破与成果》
在人工智能蓬勃发展的背景下,知识图谱的构建与应用成为热点。新技术如基于大语言模型和向量库的方法,提升了实体识别、关系抽取及图谱优化的效率和精度。这些创新已在医疗、电力、信息检索等领域取得显著成效,如思通数科平台使病例处理速度提升40%,国网湖北电力提高信息检索准确性。未来,知识图谱将更高效、智能地处理多模态数据,并在金融、教育等更多领域发挥重要作用,但也需关注数据隐私和安全问题。
《零样本学习:突破瓶颈,开启智能新征程》
零样本学习是人工智能的前沿研究方向,旨在让机器在无特定类别样本的情况下通过推理识别新类别。其主要挑战包括数据匮乏、知识表示不准确、模型泛化能力不足及语义理解困难。解决方案涉及知识图谱、强化学习、迁移学习、多模态融合和生成式模型等技术。未来,随着技术进步,零样本学习有望实现突破并在各领域广泛应用。
基于阿里云AI购物助手解决方案的深度评测
阿里云推出的AI购物助手解决方案,采用模块化架构,涵盖智能对话引擎、商品知识图谱和个性化推荐引擎。评测显示其在智能咨询问答、个性化推荐和多模态交互方面表现出色,准确率高且响应迅速。改进建议包括提升复杂问题理解、简化推荐过程及优化话术。总体评价认为该方案技术先进,应用效果好,能显著提升电商购物体验并降低运营成本。
RAG新突破:块状注意力机制实现超低延迟检索增强
检索增强生成(RAG)技术结合检索和生成模型,有效提升大型语言模型的知识获取能力。然而,高推理延迟限制了其在实时场景的应用。论文《Block-Attention for Low-Latency RAG》提出块状注意力机制,通过将输入序列划分为独立块并预先计算缓存KV状态,显著降低推理延迟。实验结果显示,该机制在保持模型准确性的同时,大幅提高了推理效率。