知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3427内容
|
7月前
|
DeepSeek-R1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning论文解读
DeepSeek团队推出了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero通过大规模强化学习训练,展示了卓越的推理能力,但存在可读性和语言混合问题。为此,团队引入多阶段训练和冷启动数据,推出性能与OpenAI-o1-1217相当的DeepSeek-R1,并开源了多个密集模型。实验表明,DeepSeek-R1在多项任务上表现出色,尤其在编码任务上超越多数模型。未来研究将聚焦提升通用能力和优化提示工程等方向。
|
7月前
|
RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
|
7月前
|
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
|
7月前
|
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
|
7月前
|
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
|
7月前
|
YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)
YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)
免费试用