Serverless Devs 官网迎来全新升级,主站以 AI 应用开发的叙事透出项目特性和解决方案。应用中心(Registry)将各类热门 AI 应用模版、实用 AI 工具以及 AI 工作流等呈现给用户。本次升级主题为“一站式 AI/函数/应用开发”,希望为开发者提供更加便利的应用模版搜索和展示服务,本文将对本次升级的三大看点进行整理,欢迎您来体验!
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
网络监控与分析在保证网络可靠性、优化用户体验和提升运营效率方面发挥着不可或缺的作用,对于出海企业应对复杂的网络环境和满足用户需求具有重要意义,为出海企业顺利承接泼天流量保驾护航。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
本文介绍了从零开始搭建自己的NextCloud个人云盘,包括场景介绍、目标读者、环境准备、操作步骤和方案验证5大方面。
企业构建零信任架构已经成为近年热门的话题之一。本质都是保护企业核心数据安全,防止未经合法授权的数据的访问行为。阿里云SASE依托于阿里云的网络组网优势,为用户提供一个稳定、高效的SD-WAN组网及接入能力,与此同时叠加安全能力。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
Kubernetes 作为当今云原生业界标准,具备良好的生态以及跨云厂商能力。Kubernetes 很好的抽象了 IaaS 资源交付标准,使得云资源交付变的越来越简单,与此同时用户期望更多的聚焦于业务自身,做到面向应用交付,Serverless 理念也因此而生。 那么如何通过原生 k8s 提供Serverless 能力?如何实现GPU等异构资源按需使用?这里给大家介绍一下我们在Serverless Kubernetes 开发实践:异构资源,按需使用。