本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。
本文介绍了一种基于阿里云计算巢的一站式MCP工具解决方案,解决了传统MCP工具集成中的效率低下、调用方式割裂和动态管理困难等问题。方案通过标准化协议实现多MCP工具批量部署,提高云资源利用率,并支持OpenAPI与MCP双通道调用,使主流AI助手如Dify、Cherry Studio等无缝接入。内容涵盖背景、原理剖析、部署使用实战及问题排查,最后强调MCP协议作为“通用语言”连接数字与物理世界的重要性。
在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。