端到端链路追踪是覆盖全部关联 IT 系统,能够完整记录用户行为在系统间调用路径与状态的最佳实践方案。而真正实现端到端链路追踪,需要解决三个难题:链路插桩、链路采集与加工、链路上下文透传。阿里云 ARMS 目前已支持全链路端到端追踪,快来查看转发吧~
相较于 AliyunLogConfig,AliyunPipelineConfig 在配置格式、行为逻辑上做了很大改进,主打灵活、简单、稳定。点击本文,手把手教你如何配置 AliyunPipelineConfig,欢迎大家使用~
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。
对象存储OSS作为云上数据湖,被广泛应用在商业智能、数据决策、广告推荐等大数据分析的场景上。随着AI workload的不断增长,OSS数据湖也在随着workload的变化不断演进。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
当代AI来势汹汹,本文从AI的特点、对研发的挑战、AI的应用工程和场景分化等剖析了AI时代的应用工程化架构演进之路。