多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
这篇摘要主要介绍了美团外卖在搜索推荐业务中如何利用图技术解决挑战,包括外卖广告搜索推荐业务的介绍、异构大图的演进、大规模图引擎的建设,以及系统的总结和展望。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
MiniCPM-V 2.0 不仅带来优秀端侧多模态通用能力,更带来惊艳的 OCR 表现。通过自研的高清图像解码技术,可以突破传统困境,让更为精准地识别充满纷繁细节的街景、长图在端侧成为可能。
通过使用阿里云百炼平台,您可以快速构建一个多代理(Multi-Agent)架构的智能导购助手。该助手能够通过多轮互动了解顾客的具体需求,收集详细信息后,利用阿里云百炼的知识检索增强功能或已有的商品数据库进行商品搜索,为顾客推荐最合适的产品。
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
本次分享,主题是利用通义灵码提升前端研发效率。分享内容主要包括以下几部分:首先,我将从前端开发的角度介绍对通义灵码的基本认识;其次,我将展示通义灵码在日常研发中的应用案例;然后,我将通过实例说明,良好的设计能够显著提升通义灵码的效果。在第四个部分,我将介绍通义灵码的企业知识库以及如何利用 RAG 构建团队智能研发助手。最后,我将总结本次分享并展望未来方向。