借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
使用阿里云函数计算FC,快速部署AI绘画工具ComfyUI,体验高质量图像生成。新用户可享180元试用额度,包括GPU、vCPU、内存和调用次数。开通FC和文件存储NAS,通过应用中心选择ComfyUI模板创建应用。
基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。
在 Spring Cloud 应用中可以非常低成本地集成 Nacos 实现配置动态刷新,在应用程序代码中通过 Spring 官方的注解 @Value 和 @ConfigurationProperties,引用 Spring enviroment 上下文中的属性值,这种用法的最大优点是无代码层面侵入性,但也存在诸多限制,为了解决问题,提升应用接入 Nacos 配置中心的易用性,Spring Cloud Alibaba 发布一套全新的 Nacos 配置中心的注解。
当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。
Kubernetes 作为当今云原生业界标准,具备良好的生态以及跨云厂商能力。Kubernetes 很好的抽象了 IaaS 资源交付标准,使得云资源交付变的越来越简单,与此同时用户期望更多的聚焦于业务自身,做到面向应用交付,Serverless 理念也因此而生。 那么如何通过原生 k8s 提供Serverless 能力?如何实现GPU等异构资源按需使用?这里给大家介绍一下我们在Serverless Kubernetes 开发实践:异构资源,按需使用。