在近来发生的 DeepSeek 遭遇的安全事件中,我们可以看到当前人工智能行业在网络安全方面的脆弱性,同时也为业界敲响了警钟。唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
本文为您介绍如何基于Hologres向量计算能力,结合大模型的阅读理解和信息整合能力,对该垂直行业的问题提供更贴切的回答,即费、快速定制专属聊天机器人。
本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。