官方博客-阿里云开发者社区

  • 2024-08-29
    4297

    深入理解 RDMA 的软硬件交互机制

    本文深入分析了RDMA技术在数据中心高性能网络环境下的工作原理及软硬件交互机制,通过对比传统Kernel TCP,突出了RDMA在减少延迟、提高系统性能方面的优势,同时讨论了其在内存管理、软硬交互方面的关键技术和挑战,为读者提供了全面理解RDMA技术及其应用场景的视角。

    4,297
  • 2024-05-15
    69663

    为什么 Lettuce 会带来更长的故障时间

    本文详述了阿里云数据库 Tair/Redis 将使用长连接客户端在非预期故障宕机切换场景下的恢复时间从最初的 900s 降到 120s 再到 30s的优化过程,涉及产品优化,开源产品问题修复等诸多方面。

    69,663
  • 阿里云 Tair 基于 3FS 工程化落地 KVCache:企业级部署、高可用运维与性能调优实践

    阿里云 Tair KVCache 团队联合硬件团队对 3FS 进行深度优化,通过 RDMA 流量均衡、小 I/O 调优及全用户态落盘引擎,提升 4K 随机读 IOPS 150%;增强 GDR 零拷贝、多租户隔离与云原生运维能力,构建高性能、高可用、易管理的 KVCache 存储底座,助力 AI 大模型推理降本增效。

  • 2026-01-05
    396

    Nacos 安全护栏:MCP、Agent、配置全维防护,重塑 AI Registry 安全边界

    Nacos安全新标杆:精细鉴权、无感灰度、全量审计!

    396
  • 2025-07-22
    1966

    轻松搭建AI知识问答系统,阿里云PolarDB MCP深度实践

    无论是PolarDB MySQL兼容MySQL语法的SQL执行功能,还是其特有的OLAP分析与AI能力,通过MCP协议向LLM开放接口后,显著降低了用户使用门槛,更为未来基于DB-Agent的智能体开发奠定了技术基础

    1,966
  • 6695

    GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践

    本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。

  • 2024-06-13
    2975

    使用KMS为Apollo配置中心敏感配置加密的最佳实践

    使用KMS为Apollo配置中心敏感配置加密的最佳实践

    2,975
  • 2024-12-13
    1831

    从大数据到大模型:如何做到“心无桎梏,身无藩篱”

    在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。

    1,831
  • 2023-10-12
    132203

    LangChain+通义千问+AnalyticDB向量引擎保姆级教程

    本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。

    132,203
  • 1
    2
    3
    4
    ...
    18
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    1/18