多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
鸿蒙操作系统(HarmonyOS)上的日志服务(SLS)SDK 提供了针对 IoT、移动端到服务端的全场景日志采集、处理和分析能力,旨在满足万物互联时代下应用的多元化设备接入、高效协同和安全可靠运行的需求。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
MiniCPM-V 2.0 不仅带来优秀端侧多模态通用能力,更带来惊艳的 OCR 表现。通过自研的高清图像解码技术,可以突破传统困境,让更为精准地识别充满纷繁细节的街景、长图在端侧成为可能。
PostgreSQL数据库目前被广泛应用于企业的在线业务,这款数据库以其高度的稳定性和完善的产品能力被业界高度赞誉和广泛接受。 本文介绍了两款PostgreSQL引擎的数据库是如何完成一套标准的数据链路同步,开发并让企业可以同时享受PostgreSQL在OLTP & OLAP的场景下的全面能力。
ADB PG是一个经典MPP数据库,长项在于查询分析处理,面对客户联机分析和联机交易(HTAP)场景就显得力不从心,我们在某银行核心系统DB2 for LUW迁移到ADB PG时就遇到类似问题,因此我们提出ADB PG+RDS PG混搭技术架构,来解决客户此类HTAP需求。该混搭架构的精髓在于扬长避短,充分发挥分析型数据库和交易型数据库的长处和特性,分析型数据库专注于数据加工跑批场景,然后批量加工的结果数据卸载到RDS PG,通过RDS PG对外提供高并发对客交易服务。
通过使用阿里云百炼平台,您可以快速构建一个多代理(Multi-Agent)架构的智能导购助手。该助手能够通过多轮互动了解顾客的具体需求,收集详细信息后,利用阿里云百炼的知识检索增强功能或已有的商品数据库进行商品搜索,为顾客推荐最合适的产品。
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?