本文整理自2024年云栖大会阿里云智能集团高级技术专家金吉祥的演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》。
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
为增强对 Python 应用,特别是 Python LLM 应用的可观测性,阿里云推出了 Python 探针,旨在解决 LLM 应用落地难、难落地等问题。助力企业落地 LLM。本文将从阿里云 Python 探针的接入步骤、产品能力、兼容性等方面展开介绍。并提供一个简单的 LLM 应用例子,方便测试。
DataAgent如何助理业务和研发成为业务参谋?如何快速低成本的创建行业数据分类标准?如何管控数据源表的访问权限?如何满足企业安全审计需求?
本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。
得益于阿里云函数计算的产品能力,魔搭 SwingDeploy 后的模型推理 API 服务默认具备极致弹性伸缩(缩零能力)、GPU 虚拟化(最小 1GB 显存粒度)、异步调用能力、按用付费、闲置计费等能力,这些能力帮助算法工程师大大加快了魔搭开源模型投入生产的生命周期。