本文将介绍阿里云如何将 Serverless 架构应用于消息队列,有效降低运营成本,同时利用云原生环境的特性,为 IoT 设备提供快速响应和灵活伸缩的通讯能力。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
ARMS RUM 是阿里云应用实时监控服务(ARMS)下的用户体验监控(RUM)产品,覆盖 Web/H5、各类平台小程序、Android、iOS、Flutter、ReactNative、Windows、macOS 等平台框架。接入 SDK 后会主动采集端侧页面性能、资源加载、API 调用、异常崩溃、卡顿、用户操作、系统信息等数据,还支持事件、日志、异常等数据按需自定义上报以满足业务数据分析需求,提供全面的性能分析、异常分析、产品分析、会话分析能力,帮助快速跟踪定位问题原因,提升产品用户使用体验。
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
本⽂对 Prompt 的使用方式进行了简单介绍,让大家了解到 Prompt 对于 LLM 的重要性。并尝试在 Prompt 中结合用户 Geo IP 信息,实现 LLM 的个性化回复,提升问答的准确度。
从 2008 年开始,我陆陆续续参与了多个 DevOps 系统的建设,如今,审视这些系统的建设初衷和它们的设计思路或遇到的问题,依然有不少借鉴意义。我会按照时间顺序,把每个 DevOps 系统的特点,诞生的背景,以及在当时所主要解决的问题做一个概要的介绍,同时,我们也会以今天的视角再次审视这些问题,来看下同样的问题,经过十几年的发展,解决方案上有哪些不同。
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。