• 关于

    字符串拷贝函数

    的搜索结果

回答

name = obj.name; 并不是字符串拷贝! 可以使用C的函数strcpy,或者用c++的std::string作为字符串类型。 ###### 28行给name分配了一块内存   29行又把name指向了obj.name   导致28行分配的内存泄漏了 解决方法一楼正解  ######memcpy或者strcpy进行字符串拷贝。你用等号的话28行的变量和obj里面的name指向的是同一块内存,当然会出问题了。######典型的没搞清楚指针,C++建议用 new delete###### 引用来自“您的好友”的评论 28行给name分配了一块内存   29行又把name指向了obj.name   导致28行分配的内存泄漏了 解决方法一楼正解  谢谢,已经懂了,非常感谢###### 引用来自“MAJIK”的评论memcpy或者strcpy进行字符串拷贝。你用等号的话28行的变量和obj里面的name指向的是同一块内存,当然会出问题了。 谢谢,已经懂了,非常感谢

爱吃鱼的程序员 2020-06-03 16:41:07 0 浏览量 回答数 0

回答

阅读源码即可~~Java库是开放源码的显然你需要阅读String构造函数的部分。以下源码来自java 1.8.0_91在String.java第113行可以看到,String内部是用名为value的字符数组实例变量储存字符串的内容`/** The value is used for character storage. */ private final char value[];`在第165行,一个参数为字符数组的构造函数,表示了用这个构造函数创建新String对象时,实际就是将参数进行浅拷贝之后,赋值给value。 public String(char value[]) { this.value = Arrays.copyOf(value, value.length); }

蛮大人123 2019-12-02 02:07:37 0 浏览量 回答数 0

回答

不依赖微软的库和WindowsAPI,没能试验成功!######问题已解决,谢谢。######看这篇文章,讲的很清楚(:)这是从其他地方拷贝过来的) UNICODE环境设置 在安装Visual Studio时,在选择VC++时需要加入unicode选项,保证相关的库文件可以拷贝到system32下。 UNICODE编译设置: C/C++, Preprocessor difinitions 去除_MBCS,加_UNICODE,UNICODE 在ProjectSetting/link/output 中设置Entry为wWinMainCRTStartup 反之为MBCS(ANSI)编译。 Unicode :宽字节字符集 1. 如何取得一个既包含单字节字符又包含双字节字符的字符串的字符个数? 可以调用Microsoft Visual C++的运行期库包含函数_mbslen来操作多字节(既包括单字节也包括双字节)字符串。 调用strlen函数,无法真正了解字符串中究竟有多少字符,它只能告诉你到达结尾的0之前有多少个字节。 size_t strlen( const char *string ); size_t wcslen( const wchar_t *string ); size_t _mbslen( const unsigned char *string ); size_t _mbstrlen( const char *string ); 2. 如何对DBCS(双字节字符集)字符串进行操作? 函数 描述 PTSTR CharNext ( LPCTSTR ); 返回字符串中下一个字符的地址 PTSTR CharPrev ( LPCTSTR, LPCTSTR ); 返回字符串中上一个字符的地址 BOOL IsDBCSLeadByte( BYTE ); 如果该字节是DBCS字符的第一个字节,则返回非0值 3. 为什幺要使用Unicode? (1) 可以很容易地在不同语言之间进行数据交换。 (2) 使你能够分配支持所有语言的单个二进制.exe文件或DLL文件。 (3) 提高应用程序的运行效率。 Windows 2000是使用Unicode从头进行开发的,如果调用任何一个Windows函数并给它传递一个ANSI字符串,那幺系统首先要将字符串转换成Unicode,然后将Unicode字符串传递给操作系统。如果希望函数返回ANSI字符串,系统就会首先将Unicode字符串转换成ANSI字符串,然后将结果返回给你的应用程序。进行这些字符串的转换需要占用系统的时间和内存。通过从头开始用Unicode来开发应用程序,就能够使你的应用程序更加有效地运行。 Windows CE 本身就是使用Unicode的一种操作系统,完全不支持ANSI Windows函数 Windows 98 只支持ANSI,只能为ANSI开发应用程序。 Microsoft公司将COM从16位Windows转换成Win32时,公司决定需要字符串的所有COM接口方法都只能接受Unicode字符串。 4. 如何编写Unicode源代码?   Microsoft公司为Unicode设计了WindowsAPI,这样,可以尽量减少代码的影响。实际上,可以编写单个源代码文件,以便使用或者不使用Unicode来对它进行编译。只需要定义两个宏(UNICODE和_UNICODE),就可以修改然后重新编译该源文件。   _UNICODE宏用于C运行期头文件,而UNICODE宏则用于Windows头文件。当编译源代码模块时,通常必须同时定义这两个宏。     5. Windows定义的Unicode数据类型有哪些?   数据类型 说明   WCHAR Unicode字符   PWSTR 指向Unicode字符串的指针   PCWSTR 指向一个恒定的Unicode字符串的指针   对应的ANSI数据类型为CHAR,LPSTR和LPCSTR。   ANSI/Unicode通用数据类型为TCHAR,PTSTR,LPCTSTR。     6. 如何对Unicode进行操作?   字符集 特性 实例   ANSI 操作函数以str开头 strcpy   Unicode 操作函数以wcs开头 wcscpy   MBCS 操作函数以_mbs开头 _mbscpy   ANSI/Unicode 操作函数以_tcs开头 _tcscpy(C运行期库)   ANSI/Unicode 操作函数以lstr开头 lstrcpy(Windows函数)   所有新的和未过时的函数在Windows2000中都同时拥有ANSI和Unicode两个版本。ANSI版本函数结尾以A表示;Unicode版本函数结尾以W表示。Windows会如下定义:   #ifdef UNICODE   #define CreateWindowEx CreateWindowExW   #else   #define CreateWindowEx CreateWindowExA   #endif // !UNICODE     7. 如何表示Unicode字符串常量?   字符集 实例   ANSI “string”   Unicode L“string”   ANSI/Unicode T(“string”)或_TEXT(“string”)   if( szError[0] == _TEXT(‘J’) ){ }     8. 为什幺应当尽量使用操作系统函数?   这将有助于稍稍提高应用程序的运行性能,因为操作系统字符串函数常常被大型应用程序比如操作系统的外壳进程Explorer.exe所使用。由于这些函数使用得很多,因此,在应用程序运行时,它们可能已经被装入RAM。   如:StrCat,StrChr,StrCmp和StrCpy等。     9. 如何编写符合ANSI和Unicode的应用程序?   (1) 将文本串视为字符数组,而不是chars数组或字节数组。   (2) 将通用数据类型(如TCHAR和PTSTR)用于文本字符和字符串。   (3) 将显式数据类型(如BYTE和PBYTE)用于字节、字节指针和数据缓存。   (4) 将TEXT宏用于原义字符和字符串。   (5) 执行全局性替换(例如用PTSTR替换PSTR)。   (6) 修改字符串运算问题。例如函数通常希望在字符中传递一个缓存的大小,而不是字节。这意味着不应该传递sizeof(szBuffer),而应该传递(sizeof(szBuffer)/sizeof(TCHAR)。另外,如果需要为字符串分配一个内存块,并且拥有该字符串中的字符数目,那幺请记住要按字节来分配内存。这就是说,应该调用   malloc(nCharacters *sizeof(TCHAR)),而不是调用malloc(nCharacters)。     10. 如何对字符串进行有选择的比较?   通过调用CompareString来实现。   int CompareString(    LCID Locale, // locale identifier DWORD dwCmpFlags, // comparison-style options LPCTSTR lpString1, // pointer to first string int cchCount1, // size, in bytes or characters, of first string LPCTSTR lpString2, // pointer to second string int cchCount2 // size, in bytes or characters, of second string   ); Locale 本地比较的定义    LOCALE_USER_DEFAULT    LOCALE_SYSTEM_DEFAULT     标志 含义   NORM_IGNORECASE 忽略字母的大小写   NORM_IGNOREKANATYPE 不区分平假名与片假名字符   NORM_IGNORENONSPACE 忽略无间隔字符   NORM_IGNORESYMBOLS 忽略符号   NORM_IGNOREWIDTH 不区分单字节字符与作为双字节字符的同一个字符   SORT_STRINGSORT 将标点符号作为普通符号来处理     11. 如何判断一个文本文件是ANSI还是Unicode?   判断如果文本文件的开头两个字节是0xFF和0xFE,那幺就是Unicode,否则是ANSI。     12. 如何判断一段字符串是ANSI还是Unicode?   用IsTextUnicode进行判断。IsTextUnicode使用一系列统计方法和定性方法,以便猜测缓存的内容。由于这不是一种确切的科学方法,因此 IsTextUnicode有可能返回不正确的结果。     13. 如何在Unicode与ANSI之间转换字符串?   Windows函数MultiByteToWideChar用于将多字节字符串转换成宽字符串;函数WideCharToMultiByte将宽字符串转换成等价的多字节字符串。     14. Unicode和DBCS之间的区别    Unicode使用(特别在C程序设计语言环境里)“宽字符集”。「Unicode中的每个字符都是16位宽而不是8位宽。」在Unicode中,没有单单使用8位数值的意义存在。相比之下,在“双位组字符集”中我们仍然处理8位数值。有些位组自身定义字符,而某些位组则显示需要和另一个位组共同定义一个字符。     处理DBCS字符串非常杂乱,但是处理Unicode文字则像处理有秩序的文字。您也许会高兴地知道前128个Unicode字符(16位代码从0x0000到0x007F)就是ASCII字符,而接下来的128个Unicode字符(代码从0x0080到0x00FF)是ISO 8859-1对ASCII的扩展。Unicode中不同部分的字符都同样基于现有的标准。这是为了便于转换。希腊字母表使用从0x0370到0x03FF的代码,斯拉夫语使用从0x0400到0x04FF的代码,美国使用从0x0530到0x058F的代码,希伯来语使用从0x0590到0x05FF的代码。中国、日本和韩国的象形文字(总称为CJK)占用了从0x3000到0x9FFF的代码。Unicode的最大好处是这里只有一个字符集,没有一点含糊。         15.衍生标准     Unicode是一个标准。UTF-8是其概念上的子集,UTF-8是具体的编码标准。而UNICODE是所有想达到世界统一编码标准的标准。UTF-8标准就是Unicode(ISO10646)标准的一种变形方式,      UTF的全称是:Unicode/UCS Transformation Format,其实有两种UTF,一种是UTF-8,一种是UTF-16,      不过UTF-16使用较少,其对应关系如下:      在Unicode中编码为 0000 - 007F 的 UTF-8 中编码形式为: 0xxxxxxx      在Unicode中编码为 0080 - 07FF 的 UTF-8 中编码形式为: 110xxxxx 10xxxxxx      在Unicode中编码为 0000 - 007F 的 UTF-8 中编码形式为: 1110xxxx 10xxxxxx 10xxxxxx           utf-8是unicode的一个新的编码标准,其实unicode有过好几个标准.我们知道一直以来使用的unicode字符内码都是16位,它实际上还不能把全世界的所有字符编在一个平面系统,比如中国的藏文等小语种,所以utf-8扩展到了32位,也就是说理论在utf-8中可容纳二的三十二次方个字符. UNICODE的思想就是想把所有的字符统一编码,实现一个统一的标准.big5、gb都是独立的字符集,这也叫做远东字符集,把它拿到德文版的WINDOWS上可能将会引起字符编码的冲突....早期的WINDOWS默认的字符集是ANSI.notepad中输入的汉字是本地编码,但在NT/2000内部是可以直接支持UNICODE的。notepad.exe在WIN95和98中都是ANSI字符,在NT中则是UNICODE.ANSI和UNICODE可以方便的实现对应映射,也就是转换 ASCII是8位范围内的字符集,对于范围之外的字符如汉字它是无法表达的。unicode是16位范围内的字符集,对于不同地区的字符分区分配,unicode是多个IT巨头共同制定的字符编码标准。如果在unicode环境下比如WINDOWS NT上,一个字符占两字节16位,而在ANSI环境下如WINDOWS98下一个字符占一个字节8位.Unicode字符是16位宽,最多允许65,535字符,数据类型被称为WCHAR。       对于已有的ANSI字符,unicode简单的将其扩展为16位:比如ANSI"A"=0x43,则对应的UNICODE为       "A"= 0x0043        而ASCII用七存放128个字符,ASCII是一个真正的美国标准,所以它不能满足其他国家的需要,例如斯拉夫语的字母和汉字于是出现了Windows ANSI字符集,是一种扩展的ASCII码,用8位存放字符,低128位仍然存放原来的ASCII码,        而高128位加入了希腊字母等        if def UNICODE        TCHAR = wchar        else        TCHAR = char        你需要在Project\Settings\C/C++\Preprocesser definitions中添加UNICODE和_UNICODE        UINCODE,_UNICODE都要定义。不定义_UNICODE的话,用SetText(HWND,LPCTSTR),将被解释为SetTextA(HWND,LPTSTR),这时API将把你给的Unicode字符串看作ANSI字符串,显示乱码。因为windows API是已经编译好存在于dll中的,由于不管UNICODE还是ANSI字符串,都被看作一段buffer,如"0B A3 00 35 24 3C 00 00"如果按ANSI读,因为ANSI字串是以'\0'结束的,所以只能读到两字节"0B A3 \0",如果按UNICODE读,将完整的读到'\0\0'结束。         由于UNICODE没有额外的指示位,所以系统必须知道你提供的字串是哪种格式。此外,UNICODE好象是ANSI C++规定的,_UNICODE是windows SDK提供的。如果不编写windows程序,可以只定义UNICODE。 开发过程:         围绕着文件读写、字符串处理展开。文件主要有两种:.txt和.ini文件        在unicode和非unicode环境下字符串做不同处理的,那么需要参考以上9,10两条,以适应不同环境得字符串处理要求。         对文件读写也一样。只要调用相关接口函数时,参数中的字符串前都加上_TEXT等相关宏。如果写成的那个文件需要是unicode格式保存的,那么在创建文件时需要加入一个字节头。          CFile file;           WCHAR szwBuffer[128];           WCHAR *pszUnicode = L"Unicode string\n"; // unicode string           CHAR pszAnsi = "Ansi string\n"; // ansi string           WORD wSignature = 0xFEFF;           file.Open(TEXT("Test.txt"), CFile::modeCreate|CFile::modeWrite);           file.Write(&wSignature, 2);           file.Write(pszUnicode, lstrlenW(pszUnicode) * sizeof(WCHAR));           // explicitly use lstrlenW function           MultiByteToWideChar(CP_ACP, 0, pszAnsi, -1, szwBuffer, 128);           file.Write(szwBuffer, lstrlenW(szwBuffer) * sizeof(WCHAR));            file.Close();            //以上这段代码在unicode和非unicode环境下都有效。这里显式的指明用Unicode来进行操作。           在非unicode环境下,缺省调用的都是ANSI格式的字符串,此时TCHAR转换为CHAR类型的,除非显式定义WCHAR。所以在这个环境下,如果读取unicode文件,那么首先需要移动2个字节,然后读取得字符串需要用MultiByteToWideChar来转换,转换后字符串信息才代表unicode数据。          在unicode环境下,缺省调用得都是unicode格式得字符串,也就是宽字符,此时TCHAR转换为WCHAR,相关得API函数也都调用宽字符类型的函数。此时读取unicode文件也和上面一样,但是读取得数据是WCHAR的,如果要转换成ANSI格式,需要调用WideCharToMultiByte。如果读取ANSI的,则不用移动两个字节,直接读取然后视需要转换即可。                    某些语言(如韩语)必须在unicode环境下才能显示,这种情况下,在非unicode环境下开发,就算用字符串函数转换也不能达到显示文字的目的,因为此时调用得API函数是用ANSI的(虽然底层都是用UNICODE处理但是处理结果是按照程序员调用的API来显示的)。所以必须用unicode来开发。###### 用WideCharToMultiByte这个API: #include <stdio.h> #include <windows.h> int main() { FILE fp; wchar_t utf[1000], *p = utf; char ansi[2000]; fp = _wfopen(L"C:\1.txt", L"rb"); while(!feof(fp)) fread(p++, 1, 2, fp); *--p = L'\0'; fclose(fp); // utf+1剔除UTf-16标记 WideCharToMultiByte(CP_ACP, 0, utf + 1, -1, ansi, sizeof(ansi), NULL, NULL); puts(ansi); } ###### 楼上的给个链接就好,不用大篇幅复制。 卤煮的意思是说把“\u6C49\u5B57” 这个ASCII字符串转成两个汉字对吧~ ######不用别人的库,查unicode编码表?lz解决了说说方法呀######C++没解决,后来这个模块改用C#写了。###### 按二进制读,先读出0xFF 0xFE,后面数据的两个字节表示一个字,自己想办法读到wstring中 显示,用API的话,一个wcstombs ,一个WideCharToMultiByte 不用API的话自己查表,嵌入式程序可以查表,x86程序完全没那个必要 ###### 干嘛不用std::wstring ###### 用std::wstring吧,自己没有试过……,你可以去尝试下

kun坤 2020-06-07 13:49:51 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

递归是可以的,但void reverse(string& s)是不可能的,因为不存在将新的字符串建立在原址上的拷贝构造函数

DM。 2020-05-29 18:32:30 0 浏览量 回答数 0

回答

Python的参数传递有:位置参数、默认参数、可变参数、关键字参数。 函数的传值到底是值传递还是引用传递、要分情况: 不可变参数用值传递:像整数和字符串这样的不可变对象,是通过拷贝进行传递的,因为你无论如何都不可能在原处改变不可变对象。 可变参数是引用传递:比如像列表,字典这样的对象是通过引用传递、和C语言里面的用指针传递数组很相似,可变对象能在函数内部改变。

珍宝珠 2019-12-02 03:12:48 0 浏览量 回答数 0

回答

根据设计,字符串保存Unicode文本,因此可以组合所有语言脚本。为此,该实现包含一个数组(字段名value),其中每个字符都是两个字节的UTF-16值。 您在Java类中遇到了一个和AFAIK唯一的傻点。 所示的拷贝构造函数是毫无意义的,因为字符串是不可变的对象,它们可以通过简单的赋值来共享。它是C ++继承的化石,也许与String实习有关。 进行复制是没有意义的。这对于内部char数组也适用,实际上可以通过引用来分配。(不是很重要)。 因此,以下内容显示了没有经验的Java用法: String s = new String(t); 在最新的Java版本中,String的值实际上可能是某种编码形式的字节数组,因此,懒惰地提供了chars。 回答来源:Stack Overflow

montos 2020-03-22 15:38:10 0 浏览量 回答数 0

回答

在明确list大小情况下应该尽可能的给定初始容量,节省内存开销。很多情况我们不知道初始容量,所以一般没有传入此参数,这样一来,其容量的扩充是基于2的多少次方来计算的,扩容的时候或许初始化了很多数组元素,但可能绝大部分没用到,这就浪费内存了。######回复 @PengTdy : 好像list如果不传入初始容量,默认初始容量是16,如果add了17个,那么容量变为32,add了33个变为64......,注意这里的16、 32、 64......。当然动态扩容的时候会重新分配list内部数组的内存空间,然后进行数据拷贝。如果程序员预先知道会add多少个,那么传入初始容量,就省去了扩容数组和数据拷贝,不管是内存分配和执行效率都会提升的。######回复 @BoXuan : 好的谢谢######回复 @PengTdy : 一般的数组是不能动态扩容的,list其实就是动态扩容数组,内部实现还是基于数组的。这个初始容量就是指示list内部数组初始化几个数组元素,你这里是2,就是初始化2个数组元素,而你这又刚好add了2个,你再add一下,内部数组扩容就会基于2的多少次方去重新初始化多少个数组元素,你可以找找ArrayList的源码看看######是不是 如果初始化值那里我设置的是3是不是就是3的次方,如果设置的6是不是就是6的次方;如果没有指定就是默认2的次方?######时刻想到,要节约使用内存空间。###### 图片里面圈出来的那个2是List初始大小.文档要求的那部分是String[] array = new String[list.size()],要求array的大小和list.size()一致.######回复 @PengTdy : 因为后来要把list里的数据(所有字符串元素),都储存到字符串数组 array之中。试想一下,如果创建的字符串空间(array数组长度)太小,则不够存下 list 的所有元素;如果创建的字符串空间(array数组长度)太大,则没必要(太浪费)。故,一致才好。######这保持一致有什么好处吗?###### ArrayList 实现了接口 List<E>。所以,用 ArrayList 的构造方法所生成的对象, 可以用这个接口的名称 List<String>来表示其类型 。因为 List<E> 的泛型 E, 是字符串类型,所以在调用 ArrayList 的构造方法时,必须 指明它的元素是字符串类型:new ArrayList<String>(…);通过多态地挑选,选定的ArrayList 的构造方法是:public ArrayList(int initialCapacity)。调用这个函数的结果是,构造一个具有指定初始容量的空列表。其中参数:initialCapacity,表示列表的初始容量。在给出的代码里,initialCapacity 是 2。 “每个 ArrayList 实例都有一个容量。该容量是指用来存储列表元素的数组的大小。它总是至少等于列表的大小。”(出自: API 手册)从提供的代码可以看到,你提出的圆括号里的 2,表示要求产生的列表 list的初始容量是2个元素。接下来,果然添加了两个字符串元素: “guan”和 “bao”。看来,用来存储列表元素的数组的大小 2,正好够用。因此,list 的大小(list.size())仍然是 2。所以,最终导致创建并赋值的的字符串数组 array的长度,也是 2 。总之,你所提出的 (2 ), 虽然只是 列表的初始容量。但 碰巧后来,只添加了2个字符串,致使,list 的大小未变,导致最终字符串数组的长度,也只是2。######回复 @PengTdy : 建议阅读 http://blog.csdn.net/arui319/article/details/3557743######如果初始化值那里我设置的是3是不是就是3的次方,如果设置的6是不是就是6的次方;如果没有指定就是默认2的次方?###### 大家的回复果然很溜。###### 预先分配容器的容量,1:可以节省内存使用;2:可以减少频繁扩容导致的内存垃圾和数组拷贝损耗。

kun坤 2020-06-10 09:35:33 0 浏览量 回答数 0

回答

不晓得你看的什么书,我不大明白这个地址值和数据值的定义一个左值可能是一个函数或者对象。 一个右值可能是一个对象、临时对象或者临时对象的子对象、或者不是对象的值 具体可以参阅标准3.10小节,讲的就是左值与右值至于5所在的内存位置,对于这种整数来说,对于编译器来讲一般都是使用立即数直接赋值,5并没有临时存在于什么地方,就像是把5放在a所在的栈上的位置,那么这句话就是 a = 5;如果是字符串,有可能存储在其他位置比如代码段,然后拷贝过来,这样就是 str = "123143";

杨冬芳 2019-12-02 02:27:36 0 浏览量 回答数 0

问题

C中局部变量指针问题

a123456678 2019-12-01 19:45:40 942 浏览量 回答数 1

回答

1、了解视频面试的有效交流成分 面试者可先试演盯着摄像头说话,让对方有一种面谈的感觉;增加一些无伤大雅的微动作,比如点头赞同对方;以及找到自己最适合视频说话的语调和语速,这些将会缩小与面试官的距离感。 2、熟悉面试平台的操作流程 可以使用一下自己常用的招聘APP,查找一下平台视频面试流程的详细说明 3、做好个人面试前的准备 天下大事,必作于细。除了对视频面试和面试平台的了解,个人的准备也是事关重要的。 - [1]个人的形象准备。 虽然是线上的视频面试,但还是可以看到彼此,我们都需要做好准备。比如面试官在国外的下午进行视频面试,国内刚好是晚上,如果此时一身家居服的你与面试官视频,对方难以感受到尊重。所以,无论任何时间点,符合面试的正式服装并且穿戴整齐,才能将专业度传递给面试官。 - [2]室内场所的选择。 选择一个安静的没有干扰的地方,视频区域整洁没有多余的杂物;灯光明亮,避免人像曝光,面试官可清晰看到你;确保坐的椅子舒适,利于自己在面试过程中精神保持专注。 - [3]个人设备和网络。 确认手机电量充足,对应的相机和麦克风功能可以正常使用;关闭任何会发出提示音的设备,避免面试中收到干扰;测试设备和网络是否能正常使用,减少面试中出现断网等低级错误。疫情未止,但这不会成为找工作面试的阻碍,在疫情期间做好面试的充足准备,提高线上面试的重视度,即便现场出现突发状况,镇静并且及时与对方沟通,商量解决方案,一切都能迎刃而解。总之,只要做好十足的准备,确保一切都是最佳状态,即便从未经历过视频面试的你,也能脱颖而出。 面试某技术岗位,事先练习面试题 比如Python,小编为大家精心准备了以下面试题 1.Python是如何进行内存管理的? 答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制 一、对象的引用计数机制 Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。 引用计数增加的情况: - 1,一个对象分配一个新名称 - 2,将其放入一个容器中(如列表、元组或字典) 引用计数减少的情况: - 1,使用del语句对对象别名显示的销毁 - 2,引用超出作用域或被重新赋值 sys.getrefcount( )函数可以获得对象的当前引用计数 多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。 二、垃圾回收 - 1,当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。 - 2,当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。 三、内存池机制 Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。 - 1,Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。 - 2,Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。 - 3,对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。 2.什么是lambda函数?它有什么好处? 答:lambda 表达式,通常是在需要一个函数,但是又不想费神去命名一个函数的场合下使用,也就是指匿名函数 lambda函数:首要用途是指点短小的回调函数 lambda [arguments]:expression a=lambdax,y:x+y a(3,11) 3.Python里面如何实现tuple和list的转换? 答:直接使用tuple和list函数就行了,type()可以判断对象的类型 4.请写出一段Python代码实现删除一个list里面的重复元素 答: - 1,使用set函数,set(list) - 2,使用字典函数, a=[1,2,4,2,4,5,6,5,7,8,9,0] b={} b=b.fromkeys(a) c=list(b.keys()) c 5.编程用sort进行排序,然后从最后一个元素开始判断 a=[1,2,4,2,4,5,7,10,5,5,7,8,9,0,3] a.sort() last=a[-1] for i inrange(len(a)-2,-1,-1): if last==a[i]: del a[i] else:last=a[i] print(a) 6.Python里面如何拷贝一个对象?(赋值,浅拷贝,深拷贝的区别) 答:赋值(=),就是创建了对象的一个新的引用,修改其中任意一个变量都会影响到另一个。 浅拷贝:创建一个新的对象,但它包含的是对原始对象中包含项的引用(如果用引用的方式修改其中一个对象,另外一个也会修改改变){1,完全切片方法;2,工厂函数,如list();3,copy模块的copy()函数} 深拷贝:创建一个新的对象,并且递归的复制它所包含的对象(修改其中一个,另外一个不会改变){copy模块的deep.deepcopy()函数} 7.介绍一下except的用法和作用? 答:try…except…except…[else…][finally…] 执行try下的语句,如果引发异常,则执行过程会跳到except语句。对每个except分支顺序尝试执行,如果引发的异常与except中的异常组匹配,执行相应的语句。如果所有的except都不匹配,则异常会传递到下一个调用本代码的最高层try代码中。 try下的语句正常执行,则执行else块代码。如果发生异常,就不会执行 如果存在finally语句,最后总是会执行。 8.Python中pass语句的作用是什么? 答:pass语句不会执行任何操作,一般作为占位符或者创建占位程序,whileFalse:pass 9.介绍一下Python下range()函数的用法? 答:列出一组数据,经常用在for in range()循环中 10.如何用Python来进行查询和替换一个文本字符串? 答:可以使用re模块中的sub()函数或者subn()函数来进行查询和替换, 格式:sub(replacement, string[,count=0])(replacement是被替换成的文本,string是需要被替换的文本,count是一个可选参数,指最大被替换的数量) import re p=re.compile(‘blue|white|red’) print(p.sub(‘colour’,'blue socks and red shoes’)) colour socks and colourshoes print(p.sub(‘colour’,'blue socks and red shoes’,count=1)) colour socks and redshoes subn()方法执行的效果跟sub()一样,不过它会返回一个二维数组,包括替换后的新的字符串和总共替换的数量 11.Python里面match()和search()的区别? 答:re模块中match(pattern,string[,flags]),检查string的开头是否与pattern匹配。 re模块中research(pattern,string[,flags]),在string搜索pattern的第一个匹配值。 print(re.match(‘super’, ‘superstition’).span()) (0, 5) print(re.match(‘super’, ‘insuperable’)) None print(re.search(‘super’, ‘superstition’).span()) (0, 5) print(re.search(‘super’, ‘insuperable’).span()) (2, 7) 12.用Python匹配HTML tag的时候,<.>和<.?>有什么区别? 答:术语叫贪婪匹配( <.> )和非贪婪匹配(<.?> ) 例如: test <.> : test <.?> : 13.Python里面如何生成随机数? 答:random模块 随机整数:random.randint(a,b):返回随机整数x,a<=x<=b random.randrange(start,stop,[,step]):返回一个范围在(start,stop,step)之间的随机整数,不包括结束值。 随机实数:random.random( ):返回0到1之间的浮点数 random.uniform(a,b):返回指定范围内的浮点数。 14.有没有一个工具可以帮助查找python的bug和进行静态的代码分析? 答:PyChecker是一个python代码的静态分析工具,它可以帮助查找python代码的bug, 会对代码的复杂度和格式提出警告 Pylint是另外一个工具可以进行codingstandard检查 15.如何在一个function里面设置一个全局的变量? 答:解决方法是在function的开始插入一个global声明: def f() global x 16.单引号,双引号,三引号的区别 答:单引号和双引号是等效的,如果要换行,需要符号(),三引号则可以直接换行,并且可以包含注释 如果要表示Let’s go 这个字符串 单引号:s4 = ‘Let\’s go’ 双引号:s5 = “Let’s go” s6 = ‘I realy like“python”!’ 这就是单引号和双引号都可以表示字符串的原因了 最后小编祝福大家能在2020年找到心仪的工作哈

剑曼红尘 2020-03-12 16:06:50 0 浏览量 回答数 0

问题

【精品问答】前端开发必懂之JS技术二百问

茶什i 2019-12-01 22:05:04 146 浏览量 回答数 0

回答

今天浏览博客的时候看到这么一句话: python中变量名和对象是分离的;最开始的时候是看到这句话的时候没有反应过来。决定具体搞清楚一下python中变量与对象之间的细节。(其实我感觉应该说 引用和对象分离 更为贴切)   从最开始的变量开始思考:    在python中,如果要使用一个变量,不需要提前进行声明,只需要在用的时候,给这个变量赋值即可 (这个和C语言等静态类型语言不同,和python为动态类型有关)。    举第一个栗子:     a = 1    这是一个简单的赋值语句,整数 1 为一个对象,a 是一个引用,利用赋值语句,引用a指向了对象1;这边形象比喻一下:这个过程就相当于“放风筝”,变量a就是你手里面的“线”,python就跟那根“线”一样,通过引用来接触和拴住天空中的风筝——对象。    你可以通过python的内置函数 id() 来查看对象的身份(identity),这个所谓的身份其实就是 对象 的内存地址:     注:      python一切皆对象的理念,所以函数也是一个对象,因此可以使用 id() 函数的__doc__方法来查看这个函数的具体描述: 12 id.__doc__ "id(object) -> integer\n\nReturn the identity of an object. This is guaranteed to be unique among\nsimultaneously existing objects.       (Hint: it's the object's memory address.)"       第二个栗子:     a = 2     a = 'banana'    利用上面第一个栗子用到的 id()函数:     123456 a = 1id(a) 24834392 a = 'banana'id(a) 139990659655312    第一个语句中, 2是储存在内存中的一个整数对象,通过赋值 引用a 指向了 对象 1     第二个语句中,内存中建立了一个字符串对象‘banana’,通过赋值 将 引用a 指向了 ‘banana’,同时,对象1不在有引用指向它,它会被python的内存处理机制给当我垃圾回收,释放内存。    第三个栗子:     a = 3     b = 3    通过函数查看 变量a 和 变量b的引用情况:  123456 a = 3b = 3id(a) 10289448 id(b) 10289448  在这里可以看到 这俩个引用 指向了同一个 对象,这是为什么呢? 这个跟python的内存机制有关系,因为对于语言来说,频繁的进行对象的销毁和建立,特别浪费性能。所以在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。    第四个栗子:     1. a = 4     2. b = a(这里就是让引用b指向引用a指向的那个对象)     3. a = a + 2    通过函数查看引用情况:     当执行到第2步的时候,查看一下 a 和 b 的引用:       123456 a = 4b = aid(a) 36151568 id(b) 36151568    可以看到 a 和 b 都指向了 整数对象 4     接下来指向第3步: 12345 a = a+2id(a) 36151520 id(b) 36151568    可以看到 a 的引用改变了,但是 b 的引用未发生改变;a,b指向不同的对象; 第3句对 a 进行了重新赋值,让它指向了新的 对象6;即使是多个引用指向同一个对象,如果一个引用值发生变化,那么实际上是让这个引用指向一个新的引用,并不影响其他的引用的指向。从效果上看,就是各个引用各自独立,互不影响。    第五个栗子(这个栗子会涉及到 python中的 可变数据类型 和 不可变数据类型):    开始这个栗子之前,请记得注意到 第四个栗子的不同之处。      1. L1 = [1, 2, 3]      2. L2 = L1      3. L1[0] = 10    通过函数查看引用情况:      当执行第1步 和 第二步 的时候,查看一下 L1 和 L2 的引用情况: 123456 L1 = [1,2,3]L2 = L1id(L1) 139643051219496 id(L2) 139643051219496     此时 L1 和 L2 的引用相同,都是指向 [1,2,3]这个列表对象。      接下来,继续执行第3步: 1234567 L1[0] = 10id(L1) 139643051219496 id(L2) 139643051219496 L2 [10, 2, 3]     同样的跟第四个栗子那样,修改了其中一个对象的值,但是可以发现 结果 并不与 第四个栗子那样, 在本次实验中,L1 和 L2 的引用没有发生任何变化,但是 列表对象[1,2,3] 的值 变成了 [10,2,3](列表对象改变了)      在该情况下,我们不再对L1这一引用赋值,而是对L1所指向的表的元素赋值。结果是,L2也同时发生变化。      原因何在呢?因为L1,L2的指向没有发生变化,依然指向那个表。表实际上是包含了多个引用的对象(每个引用是一个元素,比如L1[0],L1[1]..., 每个引用指向一个对象,比如1,2,3), 。而L1[0] = 10这一赋值操作,并不是改变L1的指向,而是对L1[0], 也就是表对象的一部份(一个元素),进行操作,所以所有指向该对象的引用都受到影响。 (与之形成对比的是,我们之前的赋值操作都没有对对象自身发生作用,只是改变引用指向。)      列表可以通过引用其元素,改变对象自身(in-place change)。这种对象类型,称为可变数据对象(mutable object),词典也是这样的数据类型。      而像之前的数字和字符串,不能改变对象本身,只能改变引用的指向,称为不可变数据对象(immutable object)。      我们之前学的元组(tuple),尽管可以调用引用元素,但不可以赋值,因此不能改变对象自身,所以也算是immutable object.              is关键字:     当然,我们也可以要想知道是否指向同一个对象,我们可以使用 python的 is 关键词,is用于判断两个引用所指的对象是否相同。     就像上述第四个栗子 当进行到 第1步 和 第2步 的时候: 1234 a = 4 ……id(a) = 36151568b =a ……id(b) = 36151568a is b True    当进行到第3步的时候: 123 a = a + 2 ……id(a) = 36151520a is b ……id(b) = 36151568 False                   突然想到,对于python 的 深拷贝 和 浅拷贝 的理解,也是可以根据这个进行验证,可以通过第五个栗子进行辅助理解。        

xuning715 2019-12-02 01:10:27 0 浏览量 回答数 0

回答

一、垃圾回收:python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值。对Python语言来讲,对象的类型和内存都是在运行时确定的。这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结为对变量内存地址的分配是在运行时自动判断变量类型并对变量进行赋值)。 二、引用计数:Python采用了类似Windows内核对象一样的方式来对内存进行管理。每一个对象,都维护这一个对指向该对对象的引用的计数。当变量被绑定在一个对象上的时候,该变量的引用计数就是1,(还有另外一些情况也会导致变量引用计数的增加),系统会自动维护这些标签,并定时扫描,当某标签的引用计数变为0的时候,该对就会被回收。 三、内存池机制Python的内存机制以金字塔行,-1,-2层主要有操作系统进行操作,    第0层是C中的malloc,free等内存分配和释放函数进行操作;    第1层和第2层是内存池,有Python的接口函数PyMem_Malloc函数实现,当对象小于256K时有该层直接分配内存;    第3层是最上层,也就是我们对Python对象的直接操作; 在 C 中如果频繁的调用 malloc 与 free 时,是会产生性能问题的.再加上频繁的分配与释放小块的内存会产生内存碎片. Python 在这里主要干的工作有: 如果请求分配的内存在1~256字节之间就使用自己的内存管理系统,否则直接使用 malloc. 这里还是会调用 malloc 分配内存,但每次会分配一块大小为256k的大块内存. 经由内存池登记的内存到最后还是会回收到内存池,并不会调用 C 的 free 释放掉.以便下次使用.对于简单的Python对象,例如数值、字符串,元组(tuple不允许被更改)采用的是复制的方式(深拷贝?),也就是说当将另一个变量B赋值给变量A时,虽然A和B的内存空间仍然相同,但当A的值发生变化时,会重新给A分配空间,A和B的地址变得不再相同

茶什i 2019-12-02 03:09:02 0 浏览量 回答数 0

回答

char src 改为 charsrc[]######回复<aclass="referer"target="_blank">@痞子汤:我知道了谢谢,我企图去修改字符串常量的值,所以出错了..使用char[]="xxx";会有一个额外的拷贝过程,即把常量区的"xxx"拷贝到栈内存去,所以执行strcpy不会有任何问题.参考:http://blog.csdn.net/hackbuteer1/article/details/6706562,Thankyouverymuch.######回复<aclass="referer"target="_blank">@cyper:都说了charsrc="xxx"和constcharsrc="xxx"是一样的啊######回复<aclass="referer"target="_blank">@cyper:日,什么叫碰巧对了。数据存储的地方不一样啊,char是常量区######碰巧对了!char*src和charsrc[]有什么区别么?数组名不就是指针,,太让我意外拉######last.NullPointException.--######你是搞java的吧...不是那个原因,在36行才出错######呼叫<aclass="referer"target="_blank">@中山野鬼###### 在include之前添加下列语句,注意,必须在C源文件的第一行。<preclass="brush:cpp;toolbar:true;auto-links:false;">#define_CRT_SECURE_NO_DEPRECATE 出现这个问题是应该你使用了vs2005或更高版本,这些版本使用了更加安全的安全crt功能。 ######也是醉了######回复<aclass="referer"target="_blank">@cyper:VisualStudio2013Update4下运行出现错误,但是我不使用安全的CRT功能就正常了。######这句有什么用加了没有效果在你的机器上正常吗?我是直接在ubuntu下用的gcc编译的######char<spanstyle="font-family:Consolas,'BitstreamVeraSansMono','CourierNew',Courier,monospace;font-size:14px;line-height:15.3999996185303px;background-color:#FFFFFF;">*src="he   lloworld ! ";   ==  const char *src= <spanstyle="font-size:13.3333330154419px;">"he   lloworld ! "; ######前面加个限定符const也可以######<divclass="ref"> 引用来自“cyper”的评论呼叫<atarget="_blank"rel="nofollow">@中山野鬼 哈,你这个问题,出在两个地方。一个是空间的定义,一个对空间的操作。 strcpy是往地址里写东西,而这个地址你获取的是另一个函数里的常量字符串的地址。这能写就有鬼了,反正不是我这头鬼。 至于楼上几个说的,我只是附带强调一下,vc++是vc++,不是C的编译器。要确认你写的是c代码,还是安心在linux下,或者mac下,用C编译器搞。否则原本对C是错的代码,但C++的编译器能过,你就想当然认为这样写就C就ok了。其实还是错了。当然楼主的错误和此处我提环境问题没关系。######都给你提示了段错误。你去修改代码段的字符串常量当然会挂掉了

优选2 2020-06-09 15:13:14 0 浏览量 回答数 0

回答

1 js 的基本数据类型? 2 JavaScript 有几种类型的值? 3 什么是堆?什么是栈?它们之间有什么区别和联系? 4 内部属性 [Class] 是什么? 5 介绍 js 有哪些内置对象? 6 undefined 与 undeclared 的区别? 7 null 和 undefined 的区别? 8 如何获取安全的 undefined 值? 9 说几条写 JavaScript 的基本规范? 10 JavaScript 原型,原型链? 有什么特点? 11 js 获取原型的方法? 12 在 js 中不同进制数字的表示方式? 13 js 中整数的安全范围是多少? 14 typeof NaN 的结果是什么? 15 isNaN 和 Number.isNaN 函数的区别? 16 Array 构造函数只有一个参数值时的表现? 17 其他值到字符串的转换规则? 18 其他值到数字值的转换规则? 19 其他值到布尔类型的值的转换规则? 20 {} 和 [] 的 valueOf 和 toString 的结果是什么? 21 什么是假值对象? 22 ~ 操作符的作用? 23 解析字符串中的数字和将字符串强制类型转换为数字的返回结果都是数字,它们之间的区别是什么? 24 + 操作符什么时候用于字符串的拼接? 25 什么情况下会发生布尔值的隐式强制类型转换? 26 || 和 && 操作符的返回值? 27 Symbol 值的强制类型转换? 28 == 操作符的强制类型转换规则? 29 如何将字符串转化为数字,例如 '12.3b'? 30 如何将浮点数点左边的数每三位添加一个逗号,如 12000000.11 转化为『12,000,000.11』? 31 常用正则表达式? 32 生成随机数的各种方法? 33 如何实现数组的随机排序? 34 javascript 创建对象的几种方式? 35 JavaScript 继承的几种实现方式? 36 寄生式组合继承的实现? 37 Javascript 的作用域链? 38 谈谈 This 对象的理解。 39 eval 是做什么的? 40 什么是 DOM 和 BOM? 41 写一个通用的事件侦听器函数。 42 事件是什么?IE 与火狐的事件机制有什么区别? 如何阻止冒泡? 43 三种事件模型是什么? 44 事件委托是什么? 45 ['1', '2', '3'].map(parseInt) 答案是多少? 46 什么是闭包,为什么要用它? 47 javascript 代码中的 'use strict'; 是什么意思 ? 使用它区别是什么? 48 如何判断一个对象是否属于某个类? 49 instanceof 的作用? 50 new 操作符具体干了什么呢?如何实现? 51 Javascript 中,有一个函数,执行时对象查找时,永远不会去查找原型,这个函数是? 52 对于 JSON 的了解? 53 [].forEach.call($$(''),function(a){a.style.outline='1px solid #'+(~~(Math.random()(1<<24))).toString(16)}) 能解释一下这段代码的意思吗? 54 js 延迟加载的方式有哪些? 55 Ajax 是什么? 如何创建一个 Ajax? 56 谈一谈浏览器的缓存机制? 57 Ajax 解决浏览器缓存问题? 58 同步和异步的区别? 59 什么是浏览器的同源政策? 60 如何解决跨域问题? 61 服务器代理转发时,该如何处理 cookie? 62 简单谈一下 cookie ? 63 模块化开发怎么做? 64 js 的几种模块规范? 65 AMD 和 CMD 规范的区别? 66 ES6 模块与 CommonJS 模块、AMD、CMD 的差异。 67 requireJS 的核心原理是什么?(如何动态加载的?如何避免多次加载的?如何 缓存的?) 68 JS 模块加载器的轮子怎么造,也就是如何实现一个模块加载器? 69 ECMAScript6 怎么写 class,为什么会出现 class 这种东西? 70 documen.write 和 innerHTML 的区别? 71 DOM 操作——怎样添加、移除、移动、复制、创建和查找节点? 72 innerHTML 与 outerHTML 的区别? 73 .call() 和 .apply() 的区别? 74 JavaScript 类数组对象的定义? 75 数组和对象有哪些原生方法,列举一下? 76 数组的 fill 方法? 77 [,,,] 的长度? 78 JavaScript 中的作用域与变量声明提升? 79 如何编写高性能的 Javascript ? 80 简单介绍一下 V8 引擎的垃圾回收机制 81 哪些操作会造成内存泄漏? 82 需求:实现一个页面操作不会整页刷新的网站,并且能在浏览器前进、后退时正确响应。给出你的技术实现方案? 83 如何判断当前脚本运行在浏览器还是 node 环境中?(阿里) 84 把 script 标签放在页面的最底部的 body 封闭之前和封闭之后有什么区别?浏览器会如何解析它们? 85 移动端的点击事件的有延迟,时间是多久,为什么会有? 怎么解决这个延时? 86 什么是“前端路由”?什么时候适合使用“前端路由”?“前端路由”有哪些优点和缺点? 87 如何测试前端代码么? 知道 BDD, TDD, Unit Test 么? 知道怎么测试你的前端工程么(mocha, sinon, jasmin, qUnit..)? 88 检测浏览器版本版本有哪些方式? 89 什么是 Polyfill ? 90 使用 JS 实现获取文件扩展名? 91 介绍一下 js 的节流与防抖? 92 Object.is() 与原来的比较操作符 '==='、'==' 的区别? 93 escape,encodeURI,encodeURIComponent 有什么区别? 94 Unicode 和 UTF-8 之间的关系? 95 js 的事件循环是什么? 96 js 中的深浅拷贝实现? 97 手写 call、apply 及 bind 函数 98 函数柯里化的实现 99 99. 为什么 0.1 + 0.2 != 0.3?如何解决这个问题? 100 原码、反码和补码的介绍 101 toPrecision 和 toFixed 和 Math.round 的区别? 102 什么是 XSS 攻击?如何防范 XSS 攻击? 103 什么是 CSP? 104 什么是 CSRF 攻击?如何防范 CSRF 攻击? 105 什么是 Samesite Cookie 属性? 106 什么是点击劫持?如何防范点击劫持? 107 SQL 注入攻击? 108 什么是 MVVM?比之 MVC 有什么区别?什么又是 MVP ? 109 vue 双向数据绑定原理? 110 Object.defineProperty 介绍? 111 使用 Object.defineProperty() 来进行数据劫持有什么缺点? 112 什么是 Virtual DOM?为什么 Virtual DOM 比原生 DOM 快? 113 如何比较两个 DOM 树的差异? 114 什么是 requestAnimationFrame ? 115 谈谈你对 webpack 的看法 116 offsetWidth/offsetHeight,clientWidth/clientHeight 与 scrollWidth/scrollHeight 的区别? 117 谈一谈你理解的函数式编程? 118 异步编程的实现方式? 119 Js 动画与 CSS 动画区别及相应实现 120 get 请求传参长度的误区 121 URL 和 URI 的区别? 122 get 和 post 请求在缓存方面的区别 123 图片的懒加载和预加载 124 mouseover 和 mouseenter 的区别? 125 js 拖拽功能的实现 126 为什么使用 setTimeout 实现 setInterval?怎么模拟? 127 let 和 const 的注意点? 128 什么是 rest 参数? 129 什么是尾调用,使用尾调用有什么好处? 130 Symbol 类型的注意点? 131 Set 和 WeakSet 结构? 132 Map 和 WeakMap 结构? 133 什么是 Proxy ? 134 Reflect 对象创建目的? 135 require 模块引入的查找方式? 136 什么是 Promise 对象,什么是 Promises/A+ 规范? 137 手写一个 Promise 138 如何检测浏览器所支持的最小字体大小? 139 怎么做 JS 代码 Error 统计? 140 单例模式模式是什么? 141 策略模式是什么? 142 代理模式是什么? 143 中介者模式是什么? 144 适配器模式是什么? 145 观察者模式和发布订阅模式有什么不同? 146 Vue 的生命周期是什么? 147 Vue 的各个生命阶段是什么? 148 Vue 组件间的参数传递方式? 149 computed 和 watch 的差异? 150 vue-router 中的导航钩子函数 151 两个router 的区别? 152 vue 常用的修饰符? 153 computed 和 watch 区别? 154 keep-alive 组件有什么作用? 155 vue 中 mixin 和 mixins 区别? 156 开发中常用的几种 Content-Type ? 157 如何封装一个 javascript 的类型判断函数? 158 如何判断一个对象是否为空对象? 159 使用闭包实现每隔一秒打印 1,2,3,4 160 手写一个 jsonp 161 手写一个观察者模式? 162 EventEmitter 实现 163 一道常被人轻视的前端 JS 面试题 164 如何确定页面的可用性时间,什么是 Performance API? 165 js 中的命名规则 166 js 语句末尾分号是否可以省略? 167 Object.assign() 168 Math.ceil 和 Math.floor 169 js for 循环注意点 170 一个列表,假设有 100000 个数据,这个该怎么办? 171 js 中倒计时的纠偏实现? 172 进程间通信的方式? 173 如何查找一篇英文文章中出现频率最高的单词? 174 174道 JavaScript 面试题,合集

剑曼红尘 2020-04-02 14:05:35 0 浏览量 回答数 0

回答

字面值 Python在2008年引入二进制字面值。现在C++14也有了。【更新:Thiago Macieira在评论中指出,GCC实际上早在2007年就已经支持了。】`1 static const int primes = 0b10100000100010100010100010101100;`Python早在1998年引入了 原始字符串字面值。在硬编码正则表达式或Windows路径时很方便。 C++11也添加了同样的特性,只是语法上略有不同:`1 const char* path = R"(c:thisstringhasbackslashes)";`基于范围的For循环(Range-Based For Loops)在Python中,for循环总是迭代遍历一个Python对象: 1for x in myList: 2 print(x) 与此同时,在近30年里。C++仅支持C风格for循环。最后,在C++11中, 基于范围的for循环被添加进去。C++ 1for (int x : myList) 2 std::cout << x; 与Python迭代协议不同,你可以迭代一个 std::vector 或任何实现了begin和end成员函数的类。有了基于范围的for循环后,我经常发现自己希望C++能内建像Python的xrange函数一样的函数。自动化Python一直以来都是一个动态类型语言。你不需要声明变量类型,因为类型是对象本身的属性。`1x = "Hello world!"print(x)`从另一方面来说,C++不是动态类型语言。是静态类型。不过在C++11中将 auto 关键字 改作他用以用于类型推导,你能够写 看起来很像动态类型的代码:C++ 1 auto x = "Hello world!"; 2 std::cout << x; 当你调用重载几个类型的函数时,比如 std::ostream::operator<< 或者一个模板函数,C++更像一个动态类型语言。C++14进一步充实以支持auto关键字,为auto添加了 返回值支持和lambda函数 参数支持。元组 Python从一开始就很好的定义了元组类型。当你需要把几个值整合在一起的时候,元组就非常适合,这样就再不需要命名类来实现同样的功能了。 triple = (5, 6, 7) print(triple[0]) C++在C++11标准库中添加了对元组的支持。C++11的建议书 甚至还提到了这么做是受Python启发的:C++ auto triple = std::make_tuple(5, 6, 7); std::cout << std::get<0>(triple); Pyton允许你把一个元组解析为多个独立的变量:`x, y, z = triple`在C++里,你可以使用std::tie实现同样的功能:C++`std::tie(x, y, z) = triple;`统一的初始化 在Python里,列表是内置类型。因此,你可以只使用一个表达式来创建Python列表: myList = [6, 3, 7, 8] myList.append(5); C++的向量(std::vector)与Python的列表最为相似。如今,C++11里新增的 统一的初始化可以让我们只使用一个表达式来创建向量和列表了:C++ auto myList = std::vector<int>{ 6, 3, 7, 8 }; myList.push_back(5); 在Python里,你还可以只使用一个表达式来创建一个 字典: myDict = {5: "foo", 6: "bar"} print(myDict[5]) 与此类似,统一的初始化也适用于有序映射(std::map)和无序映射(unordered_map):C++ auto myDict = std::unordered_map<int, const char*>{ { 5, "foo" }, { 6, "bar" } }; std::cout << myDict[5]; Lambda表达式 Python从1994年开始支持lambda函数。`1 myList.sort(key = lambda x: abs(x))`Lambda表达式是在C++11中被添加进去。`1std::sort(myList.begin(), myList.end(), [](int x, int y){ return std::abs(x) < std::abs(y); });`2001年,Python添加了 静态嵌套作用域,可以让lambda函数抓取定义在封闭函数内的变量。 1def adder(amount): return lambda x: x + amount 2print(adder(5)(5)) 同样,C++ lambda表达式支持一堆灵活的 抓取规则,可以让你做相似的事情: auto adder(int amount) { return [=](int x){ return x + amount; }; } std::cout << adder(5)(5); 标准算法Python内建 filter 函数可以让你有选择的从一个列表中拷贝项(虽然列表解析是首先):`1result = filter(lambda x: x >= 0, myList)`C++11中 引入了 std::copy_if ,让你可以使用一个类似的、相当功能的类型: auto result = std::vector<int>{}; std::copy_if(myList.begin(), myList.end(), std::back_inserter(result), [](int x){ return x >= 0; }); 其他的C++ 算法模仿了Python的内建函数包括 transform、 any_of、 all_of, min 以及 max。即将到来的 范围提案有潜力进一步简化这些表达式。 参数打包Python 从 1988 年就开始支持任意长度的参数列表. 你可以定义一个函数接受任意数量的实参,Python 会将他们放到一个元组(tuple)中, 你还可以将这个元组重新展开为一个实参列表,并把他们传递进另一个函数: def foo(*args): return tuple(*args) ... triple = foo(5, 6, 7) C++11 引入了对 参数包(parameter packs) 的支持. 它类似于 Python 的任意长度参数列表,而不同于 C 风格的可变参数列表, 这个参数包有自己的标识符来表示整个实参序列。关键区别在于:在 C++ 中,这个参数包不能在运行时做为一个单独的对象来操作。你只能通过模板元编程技术在编译时来操纵他们。 template <typename... T> auto foo(T&&... args) { return std::make_tuple(args...); } ...auto triple = foo(5, 6, 7); 并非所有的 C++ 11 和 14 中的特性都借鉴于 Python。只是其中很大一部分特性看似如此。 Python 被认为是一种对使用者亲近友好的编程语言。随着时间的推移以及这些特性逐渐被其他语言借鉴,它其中一些特质也逐渐暗淡下来。

a123456678 2019-12-02 01:56:27 0 浏览量 回答数 0

回答

不良的编程习惯TOP1:粘贴复制 在学生时代,我们都知道抄袭是不对的。但在工作中,这方面的规则还很模糊。虽然有些代码块是不能盗用的——不要把专有代码拷贝到你的堆栈中,尤其是这些代码有标记版权信息。这种时候你应该编写自己的版本,老板付你薪水就是要做正事的。 但是当原始创作者想要共享代码时,问题就变得复杂了。这些共享代码也许放到了某个在线编程论坛上,也许它们是带有许可证(BSD,MIT)的开放源代码,允许使用一到三个函数。你使用这些共享代码是没有问题的,而且你上班是为了解决问题,而不是重新发明轮子。 大多数情况下,复制代码的优势非常明显,小心对待的话问题也不大。至少那些从靠谱的来源获得的代码已经被大致“检查“过了。 问题的复杂之处在于,这些共享代码是否存在一些未发现的错误,代码的用途或底层数据是否存在一些特别的假设。也许你的代码混入了空指针,而原始代码从未检查过。如果你能解决这些问题,那么就可以理解为你的老板得到了两位程序员共同努力的成果。这就是某种形式的结对编程,而且用不着什么高大上的办公桌。 不良的编程习惯TOP2:非函数式代码 在过去十年间,函数范式愈加流行。喜欢用嵌套函数调用来构建程序的人们引用了很多研究成果。这些研究表明,与旧式的变量和循环相比,函数式编程代码更安全,错误更少,而且可以随程序员的喜好任意组合在一起。粉丝们十分追捧函数式编程,还会在代码审查和拉取请求中诋毁非函数式方法。关于这种方法的优势,他们的观点其实并没有错。 但有时你需要的仅仅是一卷胶带而已。精心设计并细心计划的代码需要花费很多时间,不仅需要花费时间想象,还需要构建和之后导航的时间。这些都增加了复杂性,并且会花费很多的时间与精力。开发漂亮的函数式代码需要提前做计划,还要确保所有数据都通过正确的途径传递。有时找出并更改变量会简单得多,可能再加个注释说明一下就够了。就算要在注释中为之后的程序员致以冗长而难懂的歉意,也比重新设计整个系统,把它扳回正轨上要省事得多。 不良的编程习惯第 3 位:非标准间距 软件中的大多数空格都不会影响程序的性能。除少数使用间距指示代码块的语言(如 Python)外,大多数空格对程序行为的影响为零。尽管如此,仍然有一些得了强迫症的程序员会数空格,并坚持认为它们很重要。曾有这样一位程序员以最严肃的口吻告诉我的老板,说我正在写“非标准代码”,还说他一眼就看出来了。我的错咯?因为我没在等号的两侧放置空格,违反了 ESLint space-infix-ops 规则[1]。 有时候你只要操心那些更深层的内容就行了,谁管什么空格的位置。也许你担心数据库过载,也许你担心空指针可能会让你的代码崩溃。一套代码中,几乎所有的部分都比空格更重要,就算那些喜欢走形式的标准委员会写出来一大堆规则来限制这些空格或制表符的位置,那又如何呢。 令人欣喜的是,网上可以找到一些很好用的工具来自动重新格式化你的代码,让你的代码遵守所有精心定义的 linting 规则。人类不应该在这种事情上浪费时间和脑细胞。如果这些规则这么重要,我们就应该用工具来解决这些问题。 不良的编程习惯第 4 位:使用 goto 禁止使用 goto 的规则可以追溯到许多结构化编程工具还没有出现的时代。如果程序员想创建一个循环或跳转到另一个例程,则需要键入 goto,后跟一个行号。多年之后,编译器团队开始允许程序员使用字符串标签来代替行号。这在当时被认为是一项热门的新特性。 有的人把这样做法的结果称为“意大利面条式代码”。因为以后没人能读懂你的代码,没人搞得清楚执行路径。成为一团混乱的线程,缠结在一起。Edsger Dijkstra 写过一篇题为“我们认为 goto 声明是有害的”的一篇文章[2],号召大家拒绝使用这个命令。 但是绝对分支并不是问题所在,问题在于它产生的那堆纠缠的结果。一般来说,精心设计的 break 或 return 能提供有关该位置的代码执行情况的非常清晰的陈述。有时,将 goto 添加到一个 case 语句中所生成的东西与联 if-then-else 块的相比,结构更正确的列表理解起来更容易。 也有反例。苹果 SSL 堆栈中的“goto fail”安全漏洞[3]就是一个很好的例子。但是,如果我们谨慎地避免 case 语句和循环中出现的一些问题,我们就可以插入很好用的绝对跳转,使代码读者更容易理解正在发生的事情。有时我们可以放一个 break 或 return,不仅更简洁,而且大家读起来更愉快,除了那些讨厌 goto 的人们。 不良的编程习惯第 5 位:不声明类型 热爱类型化语言的人们有他们的理由。当我们为每个变量的数据类型添加清晰的声明时,我们会编写更好,错误更少的代码。花点时间来阐明类型,就可以帮助编译器在代码开始运行之前标记出愚蠢的错误。这可能会很痛苦,但也会有回报。这是一种编程的笨办法,就是为了避免错误。 时代变了。许多较新的编译器已经足够聪明了,它们可以在查看代码时推断出类型。它们可以在代码中前后移动,最后确认变量应该是 string 或 int,抑或是其他类型。而且,如果推断出来的这些类型没法对齐,则编译器会给出错误标志。它们不需要我们再类型化变量了。 换句话说,我们可以省略一些最简单的声明,然后就能轻松节省一些时间了。代码变得更简洁,代码读者也往往能猜出 for 循环中名为 i 的变量是一个整数。 不良的编程习惯第 6 位:溜溜球代码 程序员喜欢将其称为“yo-yo 代码”。首先,这些值将存储为字符串,然后将它们解析为整数,接下来将它们转换回字符串。这种方法效率极低。你几乎能感受到一大堆额外负载让 CPU 不堪重负的样子。能快速编写代码的聪明程序员会调整自己的代码架构,以最大程度地减少转换。因为他们安排好了计划,他们的代码也能跑得更快。 但不管你信不信,有时溜溜球代码也是有意义的。有的时候,你需要用一个可以在自己的黑匣子里搞定一大堆智能操作的库。有的老板花了很多钱,请好多天才做出来这么一个库。如果这个库需要字符串形式的数据,那么你就得给它字符串,就算你最近刚把数据转换为整数也得再转回去。 当然,你可以重写所有代码以最大程度地减少转换,但这会花费一些时间。有时,代码多运行一分钟、一小时、一天甚至一周也是可以接受的,因为重写代码会花费更多时间。有时候,增加技术债务要比重新建立一笔技术债的成本更低些。 有时这种库里面不是专有代码,而是你很久以前编写的代码。有时,转换一次数据要比重写该库中的所有内容更省事。这种时候你就可以编写悠悠球代码了,不要怕,我们都遇到过这种事情。 不良的编程习惯第7位:编写自己的数据结构 有一条标准规则是,程序员在大二学完数据结构课程后,再也不要编写用于存储数据的代码了。已经有人编写过了我们所需要的所有数据结构,并且他们的代码经过了多年的测试和重新测试。这些结构与语言打包在一起,还可能是免费的。你自己写的代码只会是一堆错误。 但有的时候数据结构库的速度有点缓慢。有时候我们被迫使用的标准结构并不适合我们自己的代码。有时,库会要求我们在使用它的结构之前重新配置数据。有时,这些库带有笨重的保护,还有一些诸如线程锁定之类的特性,而我们的代码并不需要它们。 发生这种情况时就该编写我们自己的数据结构了。有时我们自己的结构会快很多,还可能让我们的代码更整洁,因为我们不需要一大堆额外的代码来重新精确地格式化数据。 不良的编程习惯第 8 位:老式循环 很久以前,创建 C 语言的某人想将所有抽象可能性封装在一个简单的构造中。这个构造开始时要做一些事情,每次循环都要做一些事情,所有事情都完成时还有一些方法来提示我们。当时,这似乎是一种拥有无限可能性的完美语法。 此一时彼一时,如今一些现代评论者只看到了其中的麻烦,发生的事情太多了,所有这些可能性既可能向善也可能作恶。这种构造让阅读和理解代码变得非常困难。他们喜欢更加函数式的的范式,其中没有循环,只有应用到列表的函数,还有映射到某些数据的计算模板。 有时无循环方法更简洁,尤其是当我们只有一个简单的函数和一个数组的时候。但还有些时候,老式的循环要简单得多,因为它可以做更多事情。例如,当你找到第一个匹配项后就立刻停止搜索,这样的代码就简单得多。 此外,要对数据执行多项操作时,映射函数会要求更严格的编码。假设你要对每个数字取绝对值,然后取平方根,最快的方案是先映射第一个函数,然后映射第二个函数,将数据循环两次。 不良的编程习惯第 9 位:在中间打破循环 从有一天开始,一个规则制定小组宣布每个循环都应该有一个“不变项”,就是一个在整个循环中都为真的逻辑语句。当不变量不再为真时,循环就结束了。这是处理复杂循环的好方法,但会带来一些令人抓狂的约束,例如禁止我们在循环中间使用 return 或 break。这条规则是禁止 goto 语句规则的子集。 这个理论很不错,但它通常会导致代码变得更复杂。考虑以下这种简单的情况,其中会扫描一个数组,找出通过测试的一个条目: while (i<a.length){ ... if (test(a[i]) then return a[i]; ... } 喜欢循环不变项的人们宁愿我们添加另一个布尔变量,将其称为 notFound,然后这样用它: while ((notFound) && (i<a.length){ ... if (test(a[i])) then notFound=false; ... } 如果这个布尔名称取得很合适,那就会是一段自我注释得很好的代码。它可以让大家理解起来更容易。但这也增加了复杂性。这还意味着要分配另一个局部变量并阻塞一个寄存器,编译器可能没那么聪明,没法修复这个错误。 有时使用 goto 或 jump 会更简洁。 不良的编程习惯第10位:重载运算符和函数 一些有趣的语言会让你绕一些大弯子,比如说重新定义看起来应该是常量的元素值。拿 Python 来说,至少在 2.7 版及更低版本中,它允许你键入 TRUE=FALSE。这不会引发某种逻辑崩溃,也不会导致宇宙的终结;它只是交换了 TRUE 和 FALSE 的含义。你还可以使用 C 预处理器和其他一些语言来玩这种危险的游戏。还有一些语言允许你重新定义加号之类的运算符。 有时候,在一大段代码中重新定义一个或一些所谓常量,结果效率会更高。有时,老板会希望代码执行完全不同的操作。当然,你可以检查代码,逐一更改对应的部分,也可以干脆重新定义现实来节省时间。别人会觉得你是天才。用不着重写庞大的库,只需翻转一下即可。 这里也许应该划一条底线。无论这种做法多有意思,看起来多聪明,你都不应该在家里做实验。这太危险了——我是认真的。

茶什i 2019-12-30 11:01:01 0 浏览量 回答数 0

回答

触及 multiple inheritance (MI)(多继承)的时候,C++ 社区就会鲜明地分裂为两个基本的阵营。一个阵营认为如果 single inheritance (SI)(单继承)是有好处的,multiple inheritance(多继承)一定更有好处。另一个阵营认为 single inheritance(单继承)有好处,但是多继承引起的麻烦使它得不偿失。在本文中,我们的主要目的是理解在 MI 问题上的这两种看法。   首要的事情之一是要承认当将 MI 引入设计领域时,就有可能从多于一个的 base class(基类)中继承相同的名字(例如,函数,typedef,等等)。这就为歧义性提供了新的时机。例如: class BorrowableItem { // something a library lets you borrowpublic: void checkOut(); // check the item out from the library ..}; class ElectronicGadget {private: bool checkOut() const; // perform self-test, return whether ... // test succeeds}; class MP3Player: // note MI herepublic BorrowableItem, // (some libraries loan MP3 players)public ElectronicGadget{ ... }; // class definition is unimportant MP3Player mp; mp.checkOut(); // ambiguous! which checkOut?    注意这个例子,即使两个函数中只有一个是可访问的,对 checkOut 的调用也是有歧义的。(checkOut 在 BorrowableItem 中是 public(公有)的,但在 ElectronicGadget 中是 private(私有)的。)这与 C++ 解析 overloaded functions(重载函数)调用的规则是一致的:在看到一个函数的是否可访问之前,C++ 首先确定与调用匹配最好的那个函数。只有在确定了 best-match function(最佳匹配函数)之后,才检查可访问性。这目前的情况下,两个 checkOuts 具有相同的匹配程度,所以就不存在最佳匹配。因此永远也不会检查到 ElectronicGadget::checkOut 的可访问性。   为了消除歧义性,你必须指定哪一个 base class(基类)的函数被调用: mp.BorrowableItem::checkOut(); // ah, that checkOut...   当然,你也可以尝试显式调用 ElectronicGadget::checkOut,但这样做会有一个 "you're trying to call a private member function"(你试图调用一个私有成员函数)错误代替歧义性错误。    multiple inheritance(多继承)仅仅意味着从多于一个的 base class(基类)继承,但是在还有 higher-level base classes(更高层次基类)的 hierarchies(继承体系)中出现 MI 也并不罕见。这会导致有时被称为 "deadly MI diamond"(致命的多继承菱形)的后果。 class File { ... };class InputFile: public File { ... };class OutputFile: public File { ... };class IOFile: public InputFile,public OutputFile{ ... };    在一个“在一个 base class(基类)和一个 derived class(派生类)之间有多于一条路径的 inheritance hierarchy(继承体系)”(就像上面在 File 和 IOFile 之间,有通过 InputFile 和 OutputFile 的两条路径)的任何时候,你都必须面对是否需要为每一条路径复制 base class(基类)中的 data members(数据成员)的问题。例如,假设 File class 有一个 data members(数据成员)fileName。IOFile 中应该有这个 field(字段)的多少个拷贝呢?一方面,它从它的每一个 base classes(基类)继承一个拷贝,这就暗示 IOFile 应该有两个 fileName data members(数据成员)。另一方面,简单的逻辑告诉我们一个 IOFile object(对象)应该仅有一个 file name(文件名),所以通过它的两个 base classes(基类)继承来的 fileName field(字段)不应该被复制。   C++ 在这个争议上没有自己的立场。它恰当地支持两种选项,虽然它的缺省方式是执行复制。如果那不是你想要的,你必须让这个 class(类)带有一个 virtual base class(虚拟基类)的数据(也就是 File)。为了做到这一点,你要让从它直接继承的所有的 classes(类)使用 virtual inheritance(虚拟继承): class File { ... };class InputFile: virtual public File { ... };class OutputFile: virtual public File { ... };class IOFile: public InputFile,public OutputFile{ ... };    标准 C++ 库包含一个和此类似的 MI hierarchy(继承体系),只是那个 classes(类)是 class templates(类模板),名字是 basic_ios,basic_istream,basic_ostream 和 basic_iostream,而不是 File,InputFile,OutputFile 和 IOFile。   从正确行为的观点 看,public inheritance(公有继承)应该总是 virtual(虚拟)的。如果这是唯一的观点,规则就变得简单了:你使用 public inheritance(公有继承)的任何时候,都使用 virtual public inheritance(虚拟公有继承)。唉,正确性不是唯一的视角。避免 inherited fields(继承来的字段)复制需要在编译器的一部分做一些 behind-the-scenes legerdemain(幕后的戏法),而结果是从使用 virtual inheritance(虚拟继承)的 classes(类)创建的 objects(对象)通常比不使用 virtual inheritance(虚拟继承)的要大。访问 virtual base classes(虚拟基类)中的 data members(数据成员)也比那些 non-virtual base classes(非虚拟基类)中的要慢。编译器与编译器之间有一些细节不同,但基本的要点很清楚:virtual inheritance costs(虚拟继承要付出成本)。   它也有一些其它方面的成本。支配 initialization of virtual base classes(虚拟基类初始化)的规则比 non-virtual bases(非虚拟基类)的更加复杂而且更不直观。初始化一个 virtual base(虚拟基)的职责由 hierarchy(继承体系)中 most derived class(层次最低的派生类)承担。这个规则中包括的含义:   (1) 从需要 initialization(初始化)的 virtual bases(虚拟基)派生的 classes(类)必须知道它们的 virtual bases(虚拟基),无论它距离那个 bases(基)有多远;   (2) 当一个新的 derived class(派生类)被加入继承体系时,它必须为它的 virtual bases(虚拟基)(包括直接的和间接的)承担 initialization responsibilities(初始化职责)。    我对于 virtual base classes(虚拟基类)(也就是 virtual inheritance(虚拟继承))的建议很简单。首先,除非必需,否则不要使用 virtual bases(虚拟基)。缺省情况下,使用 non-virtual inheritance(非虚拟继承)。第二,如果你必须使用 virtual base classes(虚拟基类),试着避免在其中放置数据。这样你就不必在意它的 initialization(初始化)(以及它的 turns out(清空),assignment(赋值))规则中的一些怪癖。值得一提的是 Java 和 .NET 中的 Interfaces(接口)不允许包含任何数据,它们在很多方面可以和 C++ 中的 virtual base classes(虚拟基类)相比照。   现在我们使用下面的 C++ Interface class(接口类)(参见《C++箴言:最小化文件之间的编译依赖》)来为 persons(人)建模: class IPerson {public: virtual ~IPerson();  virtual std::string name() const = 0; virtual std::string birthDate() const = 0;};    IPerson 的客户只能使用 IPerson 的 pointers(指针)和 references(引用)进行编程,因为 abstract classes(抽象类)不能被实例化。为了创建能被当作 IPerson objects(对象)使用的 objects(对象),IPerson 的客户使用 factory functions(工厂函数)(再次参见 Item 31)instantiate(实例化)从 IPerson 派生的 concrete classes(具体类): // factory function to create a Person object from a unique database ID;// see Item 18 for why the return type isn't a raw pointerstd::tr1::shared_ptr makePerson(DatabaseID personIdentifier); // function to get a database ID from the userDatabaseID askUserForDatabaseID(); DatabaseID id(askUserForDatabaseID());std::tr1::shared_ptr pp(makePerson(id)); // create an object// supporting the// IPerson interface ... // manipulate *pp via// IPerson's member// functions   但是 makePerson 怎样创建它返回的 pointers(指针)所指向的 objects(对象)呢?显然,必须有一些 makePerson 可以实例化的从 IPerson 派生的 concrete class(具体类)。    假设这个 class(类)叫做 CPerson。作为一个 concrete class(具体类),CPerson 必须提供它从 IPerson 继承来的 pure virtual functions(纯虚拟函数)的 implementations(实现)。它可以从头开始写,但利用包含大多数或全部必需品的现有组件更好一些。例如,假设一个老式的 database-specific class(老式的数据库专用类)PersonInfo 提供了 CPerson 所需要的基本要素: class PersonInfo {public: explicit PersonInfo(DatabaseID pid); virtual ~PersonInfo();  virtual const char * theName() const; virtual const char * theBirthDate() const; ... private: virtual const char * valueDelimOpen() const; // see virtual const char * valueDelimClose() const; // below ...};    你可以看出这是一个老式的 class(类),因为 member functions(成员函数)返回 const char*s 而不是 string objects(对象)。尽管如此,如果鞋子合适,为什么不穿呢?这个 class(类)的 member functions(成员函数)的名字暗示结果很可能会非常合适。   你突然发现 PersonInfo 是设计用来帮助以不同的格式打印 database fields(数据库字段)的,每一个字段的值的开始和结尾通过指定的字符串定界。缺省情况下,字段值开始和结尾定界符是方括号,所以字段值 "Ring-tailed Lemur" 很可能被安排成这种格式: [Ring-tailed Lemur]   根据方括号并非满足 PersonInfo 的全体客户的期望的事实,virtual functions(虚拟函数)valueDelimOpen 和 valueDelimClose 允许 derived classes(派生类)指定它们自己的开始和结尾定界字符串。PersonInfo 的 member functions(成员函数)的 implementations(实现)调用这些 virtual functions(虚拟函数)在它们返回的值上加上适当的定界符。作为一个例子使用 PersonInfo::theName,代码如下: const char * PersonInfo::valueDelimOpen() const{ return "["; // default opening delimiter} const char * PersonInfo::valueDelimClose() const{ return "]"; // default closing delimiter} const char * PersonInfo::theName() const{ // reserve buffer for return value; because this is // static, it's automatically initialized to all zeros static char value[Max_Formatted_Field_Value_Length];  // write opening delimiter std::strcpy(value, valueDelimOpen());  append to the string in value this object's name field (being careful to avoid buffer overruns!)  // write closing delimiter std::strcat(value, valueDelimClose());  return value;}    有人可能会质疑 PersonInfo::theName 的陈旧的设计(特别是一个 fixed-size static buffer(固定大小静态缓冲区)的使用,这样的东西发生 overrun(越界)和 threading(线程)问题是比较普遍的——参见《C++箴言:必须返回对象时别返回引用》),但是请把这样的问题放到一边而注意这里:theName 调用 valueDelimOpen 生成它要返回的 string(字符串)的开始定界符,然后它生成名字值本身,然后它调用 valueDelimClose。   因为 valueDelimOpen 和 valueDelimClose 是 virtual functions(虚拟函数),theName 返回的结果不仅依赖于 PersonInfo,也依赖于从 PersonInfo 派生的 classes(类)。    对于 CPerson 的实现者,这是好消息,因为当细读 IPerson documentation(文档)中的 fine print(晦涩的条文)时,你发现 name 和 birthDate 需要返回未经修饰的值,也就是,不允许有定界符。换句话说,如果一个人的名字叫 Homer,对那个人的 name 函数的一次调用应该返回 "Homer",而不是 "[Homer]"。   CPerson 和 PersonInfo 之间的关系是 PersonInfo 碰巧有一些函数使得 CPerson 更容易实现。这就是全部。因而它们的关系就是 is-implemented-in-terms-of,而我们知道有两种方法可以表现这一点:经由 composition(复合)(参见《C++箴言:通过composition模拟“has-a”》)和经由 private inheritance(私有继承)(参见《C++箴言:谨慎使用私有继承》)。《C++箴言:谨慎使用私有继承》 指出 composition(复合)是通常的首选方法,但如果 virtual functions(虚拟函数)要被重定义,inheritance(继承)就是必不可少的。在当前情况下,CPerson 需要重定义 valueDelimOpen 和 valueDelimClose,所以简单的 composition(复合)做不到。最直截了当的解决方案是让 CPerson 从 PersonInfo privately inherit(私有继承),虽然 《C++箴言:谨慎使用私有继承》 说过只要多做一点工作,则 CPerson 也能用 composition(复合)和 inheritance(继承)的组合有效地重定义 PersonInfo 的 virtuals(虚拟函数)。这里,我们用 private inheritance(私有继承)。   但 是 CPerson 还必须实现 IPerson interface(接口),而这被称为 public inheritance(公有继承)。这就引出一个 multiple inheritance(多继承)的合理应用:组合 public inheritance of an interface(一个接口的公有继承)和 private inheritance of an implementation(一个实现的私有继承): class IPerson { // this class specifies thepublic: // interface to be implemented virtual ~IPerson();  virtual std::string name() const = 0; virtual std::string birthDate() const = 0;}; class DatabaseID { ... }; // used below; details are// unimportant class PersonInfo { // this class has functionspublic: // useful in implementing explicit PersonInfo(DatabaseID pid); // the IPerson interface virtual ~PersonInfo();  virtual const char * theName() const; virtual const char * theBirthDate() const;  virtual const char * valueDelimOpen() const; virtual const char * valueDelimClose() const; ...}; class CPerson: public IPerson, private PersonInfo { // note use of MIpublic: explicit CPerson( DatabaseID pid): PersonInfo(pid) {} virtual std::string name() const // implementations { return PersonInfo::theName(); } // of the required // IPerson member virtual std::string birthDate() const // functions { return PersonInfo::theBirthDate(); }private: // redefinitions of const char * valueDelimOpen() const { return ""; } // inherited virtual const char * valueDelimClose() const { return ""; } // delimiter}; // functions   在 UML 中,这个设计看起来像这样:   这个例子证明 MI 既是有用的,也是可理解的。    时至今日,multiple inheritance(多继承)不过是 object-oriented toolbox(面向对象工具箱)里的又一种工具而已,典型情况下,它的使用和理解更加复杂,所以如果你得到一个或多或少等同于一个 MI 设计的 SI 设计,则 SI 设计总是更加可取。如果你能拿出来的仅有的设计包含 MI,你应该更加用心地考虑一下——总会有一些方法使得 SI 也能做到。但同时,MI 有时是最清晰的,最易于维护的,最合理的完成工作的方法。在这种情况下,毫不畏惧地使用它。只是要确保谨慎地使用它。   Things to Remember   ·multiple inheritance(多继承)比 single inheritance(单继承)更复杂。它能导致新的歧义问题和对 virtual inheritance(虚拟继承)的需要。    ·virtual inheritance(虚拟继承)增加了 size(大小)和 speed(速度)成本,以及 initialization(初始化)和 assignment(赋值)的复杂度。当 virtual base classes(虚拟基类)没有数据时它是最适用的。   ·multiple inheritance(多继承)有合理的用途。一种方案涉及组合从一个 Interface class(接口类)的 public inheritance(公有继承)和从一个有助于实现的 class(类)的 private inheritance(私有继承)。 关于虚拟继承的思考虚拟继承在一般的应用中很少用到,所以也往往被忽视,这也主要是因为在C++中,多重继承是不推荐的,而一旦离开了多重继承,虚拟继承就完全失去了存在的必要(因为这样只会降低效率和占用更多的空间,实在是一无是处)。  以下面的一个例子为例:  #include   #include   class CA  {   int k; //为了便于说明后面的内存结构特别添加  public:   void f() {cout << "CA::f" << endl;}  };  class CB : public CA  {  };  class CC : public CA  {  };  class CD : public CB, public CC  {  };  void main()  {   CD d;   d.f();  }  当编译上述代码时,我们会收到如下的错误提示:  error C2385: 'CD::f' is ambiguous  即编译器无法确定你在d.f()中要调用的函数f到底是哪一个。这里可能会让人觉得有些奇怪,命名只定义了一个CA::f,既然大家都派生自CA,那自然就是调用的CA::f,为什么还无法确定呢?  这是因为编译器在进行编译的时候,需要确定子类的函数定义,如CA::f是确定的,那么在编译CB、CC时还需要在编译器的语法树中生成CB::f,CC::f等标识,那么,在编译CD的时候,由于CB、CC都有一个函数f,此时,编译器将试图生成两个CD::f标识,显然这时就要报错了。(当我们不使用CD::f的时候,以上标识都不会生成,所以,如果去掉d.f()一句,程序将顺利通过编译)  要解决这个问题,有两个方法:  1、重载函数f():此时由于我们明确定义了CD::f,编译器检查到CD::f()调用时就无需再像上面一样去逐级生成CD::f标识了;  此时CD的元素结构如下:  --------  |CB(CA)|  |CC(CA)|  --------  故此时的sizeof(CD) = 8;(CB、CC各有一个元素k)  2、使用虚拟继承:虚拟继承又称作共享继承,这种共享其实也是编译期间实现的,当使用虚拟继承时,上面的程序将变成下面的形式:  #include   #include   class CA  {   int k;  public:   void f() {cout << "CA::f" << endl;}  };  class CB : virtual public CA  {  };  class CC : virtual public CA  {  };  class CD : public CB, public CC  {  };  void main()  {   CD d;   d.f();  }  此时,当编译器确定d.f()调用的具体含义时,将生成如下的CD结构:  ----  |CB|  |CC|  |CA|  ----  同时,在CB、CC中都分别包含了一个指向CA的vbptr(virtual base table pointer),其中记录的是从CB、CC的元素到CA的元素之间的偏移量。此时,不会生成各子类的函数f标识,除非子类重载了该函数,从而达到“共享”的目的。  也正因此,此时的sizeof(CD) = 12(两个vbptr + sizoef(int));

a123456678 2019-12-02 01:58:07 0 浏览量 回答数 0

回答

一。zval、引用计数、变量分离、写时拷贝我们一步步来理解1、php语言特性PHP是脚本语言,所谓脚本语言,就是说PHP并不是独立运行的,要运行PHP代码需要PHP解析器,用户编写的PHP代码最终都会被PHP解析器解析执行PHP的执行是通过Zend engine(ZE, Zend引擎),ZE是用C编写的用户编写的PHP代码最终都会被翻译成PHP的虚拟机ZE的虚拟指令(OPCODES)来执行也就说最终会被翻译成一条条的指令既然这样,有什么结果和你预想的不一样,查看php源码是最直接最有效的 2、php变量的存储结构在PHP中,所有的变量都是用一个结构zval结构来保存的,在Zend/zend.h中可以看到zval的定义:zval结构包括:① value —— 值,是真正保存数据的关键部分,定义为一个联合体(union)② type —— 用来储存变量的类型 ③ is_ref —— 下面介绍④ refcount —— 下面介绍 声明一个变量$addr="北京";PHP内部都是使用zval来表示变量的,那对于上面的脚本,ZE是如何把addr和内部的zval结构联系起来的呢?变量都是有名字的(本例中变量名为addr)而zval中并没有相应的字段来体现变量名。PHP内部肯定有一个机制,来实现变量名到zval的映射在PHP中,所有的变量都会存储在一个数组中(确切的说是hash table)当你创建一个变量的时候,PHP会为这个变量分配一个zval,填入相应的信息,然后将这个变量的名字和指向这个zval的指针填入一个数组中。当你获取这个变量的时候,PHP会通过查找这个数组,取得对应的zval 注意:数组和对象这类复合类型在生成zval时,会为每个单元生成一个zval3、我们经常说每个变量都有一个内存地址,那这个zval和变量的内存地址,这俩有什么关系吗?定义一个变量会开辟一块内存,这块内存好比一个盒子,盒子里放了zval,zval里保存了变量的相关信息,需要开辟多大的内存,是由zval所占空间大小决定的zval是内存对象,垃圾回收的时候会把zval和内存地址(盒子)分别释放掉 4、引用计数、变量分离、写时拷贝zval中的refcount和is_ref还没有介绍,我们知道PHP是一个长时间运行的服务器端脚本。那么对于它来说,效率和资源占用率是一个很重要的衡量标准,也就是说,PHP必须尽量减少内存占用率。考虑下面这段代码:第一行代码创建了一个字符串变量,申请了一个大小为9字节的内存,保存了字符串“laruence”和一个NULL(0)的结尾第二行定义了一个新的字符串变量,并将变量var的值“复制”给这个新的变量第三行unset了变量var 这样的代码是很常见的,如果PHP对于每一个变量赋值都重新分配内存,copy数据的话,那么上面的这段代码就要申请18个字节的内存空间,为了申请新的内存,还需要cpu执行某些计算,这当然会加重cpu的负载而我们也很容易看出来,上面的代码其实根本没有必要申请两份空间,当第三句执行后,$var被释放了,我们刚才的设想(申请18个字节内存空间)突然变的很滑稽,这次复制显得好多余。如果早知道$var不用了,直接让$var_dup用$var的内存不就行了,还复制干嘛?如果你觉得9个字节没什么,那设想下如果$var是个10M的文件内容,或者20M,是不是我们的计算机资源消耗的有点冤枉呢?呵呵,PHP的开发者也看出来了: 刚才说了,PHP中的变量是用一个存储在symbol_table中的符号名,对应一个zval来实现的,比如对于上面的第一行代码,会在symbol_table中存储一个值“var”,对应的有一个指针指向一个zval结构,变量值“laruence”保存在这个zval中,所以不难想象,对于上面的代码来说,我们完全可以让“var”和“var_dup”对应的指针都指向同一个zval就可以了(额,鸟哥一会说hash table,一会说symbol_table,暂且理解为symbol_table是hash table的子集) PHP也是这样做的,这个时候就需要介绍一下zval结构中的refcount字段了refcount,引用计数,记录了当前的zval被引用的次数(这里的引用并不是真正的 & ,而是有几个变量指向它)比如对于代码:第一行,创建了一个整形变量,变量值是1。 此时保存整形1的这个zval的refcount为1第二行,创建了一个新的整形变量(通过赋值的方式),变量也指向刚才创建的zval,并将这个zval的refcount加1,此时这个zval的refcount为2所以,这个时候(通过值传递的方式赋值给别的变量),并没有产生新的zval,两个变量指向同一zval,通过一个计数器来共用zval及内存地址,以达到节省内存空间的目的当一个变量被第一次创建的时候,它对应的zval结构的refcount的值会被初始化为1,因为只有这一个变量在用它。但是当你把这个变量赋值给别的变量时,refcount属性便会加1变成2,因为现在有两个变量在用这个zval结构了 PHP提供了一个函数可以帮助我们了解这个过程debug_zval_dump输出:long(1) refcount(2)long(1) refcount(3)如果你奇怪 ,var的refcount应该是1啊?我们知道,对于简单变量,PHP是以传值的形式传参数的。也就是说,当执行debug_zval_dump($var)的时候,$var会以传值的方式传递给debug_zval_dump,也就是会导致var的refcount加1,所以只要能看到,当变量赋值给一个变量以后,能导致zval的refcount加1这个结果即可现在我们回头看上面的代码, 当执行了最后一行unset($var)以后,会发生什么呢?unset($var)的时候,它删除符号表里的$var的信息,准备清理它对应的zval及内存空间,这时它发现$var对应的zval结构的refcount值是2,也就是说,还有另外一个变量在一起用着这个zval,所以unset只需把这个zval的refcount减去1就行了上代码:输出:string(8) "laruence" refcount(2) 但是,对于下面的代码呢?很明显在这段代码执行以后,$var_dup的值应该还是“laruence”,那么这又是怎么实现的呢?这就是PHP的copy on write机制(简称COW):PHP在修改一个变量以前,会首先查看这个变量的refcount,如果refcount大于1,PHP就会执行一个分离的过程(在Zend引擎中,分离是破坏一个引用对的过程)对于上面的代码,当执行到第三行的时候,PHP发现$var想要改变,并且它指向的zval的refcount大于1,那么PHP就会复制一个新的zval出来,改变其值,将改变的变量指向新的zval(哪个变量指向新复制的zval其实已经无所谓了),并将原zval的refcount减1,并修改symbol_table里该变量的指针,使得$var和$var_dup分离(Separation)。这个机制就是所谓的copy on write(写时复制,这里的写包括普通变量的修改及数组对象里的增加、删除单元操作)如果了解了is_ref之后,上面说的并不严谨 上代码测试:输出:long(1) refcount(2)string(8) "laruence" refcount(2) 现在我们知道,当使用变量复制的时候 ,PHP内部并不是真正的复制,而是采用指向相同的zval结构来节约开销。那么,对于PHP中的引用,又是如何实现呢?这段代码结束以后,$var也会被间接的修改为1,这个过程称作(change on write:写时改变)那么ZE是怎么知道,这次的复制不需要Separation呢?这个时候就要用到zval中的is_ref字段了:对于上面的代码,当第二行执行以后,$var所代表的zval的refcount变为2,并且设置is_ref为1到第三行的时候,PHP先检查var_ref对应的zval的is_ref字段(is_ref 表示该zval是否被&引用,仅表示真或假,就像开关的开与关一样,zval的初始化情况下为0,即非引用),如果为1,则不分离,直接更改(否则需要执行刚刚提到的zval分离),更改共享的zval实际上也间接更改了$var的值,因为引擎想所有的引用变量都看到这一改变php源码做了这样一个判断,大体逻辑示意如下:如果这个zval中的if_ref为1(即被引用),或者该zval引用计数小于2任何一种方式:都不会进行分离 尽管已经存在写时复制和写时改变,但仍然还存在一些不能通过is_ref和refcount来解决的问题对于如下的代码,又会怎样呢?这里$var、$var_dup、$var_ref三个变量将共用一个zval结构(其实这是不可能的,一个zval不可能既被&,又被指向),有两个属于change-on-write组合($var和$var_ref),有两个属于copy-on-write组合($var和$var_dup),那is_ref和refcount该怎样工作,才能正确的处理好这段复杂的关系呢?答案是不可能!在这种情况下,变量的值必须分离成两份完全独立的存在当执行第二行代码的时候,和前面讲过的一样,$var_dup 和 $var 指向相同的zval, refcount为2当执行第三行的时候,PHP发现要操作的zval的refcount大于1,则PHP会执行Separation(也就是说php将一个zval的is_ref从0设为1 之前,当然此时refcount还没有增加,会看该zval的refcount,如果refcount>1,则会分离), 将$var_dup分离出去,并将$var和$var_ref做change on write关联。也就是,refcount=2, is_ref=1;所以内存会给变量var_dup 分配出一个新的zval,类型与值同 $var和$var_ref指向的zval一样,是新分配出来的,尽管他们拥有同样的值,但是必须通过两个zval来实现。试想一下,如果三者指向同一个zval的话,改边 $var_dup 的值,那么 $var和$var_ref 也会受到影响,这样就乱套了图解:下面的这段代码在内核中同样会产生歧义,所以需要强制复制!也就是说一个zval不会既被引用,又被指向,必须分离 基于这样的分析,我们就可以让debug_zval_dump出refcount为1的结果来:输出:string(8) "laruence" refcount(1) 为什么结果是refcount(1)呢debug_zval_dump()中参数是引用的话,refcount永远为1这两段代码在执行的时候是这样的逻辑:PHP先看变量指向的zval是否被引用,如果是引用,则不再产生新的zval甭管哪个变量引用了它,比如有个变量$a被引用了,$b=&$a,就算自己引用自己$a=&$a,$a所指向的zval都不会被复制,改变其中一个变量的值,另一个值也被改变(写时改变)如果is_ref为0且refcount大于1,改变其中一个变量时,复制新的zval(写时复制) 还有一个知识点需要了解下,就是PHP数组复制的机制复制一个数组,就是把一个数组赋值给一个变量便可。会把数组指针位置一同复制。这里面有两种情况:① 指针位置合法,这时直接复制,无影响② 原数组指针位置非法时(移出界),“新”数组指针会初始化(这里的新为什么要加引号?请看下文),而老的数组指针位置不变,还是false先看例子: 结果:!结果:出现这种情况好像不对?$arr2 难道不是新数组?新数组的数组指针应该重置了啊这里注意了:$arr2 = $arr1 ,在俩变量都没发生写操作时,他们其实引用的是同一个内存地址。在其中一个变量发生写操作后,内存地址会复制一份,发生改变的变量会去引用它,并把数组指针初始化。所以 $arr1 会去引用复制的内存地址,并将指针初始化二。.foreach循环时调用current等函数!结果: 56按照之前说的,foreach先赋值,再移动指针,再执行循环体,第一次结果为2可以理解为什么三次都是2呢?咋就这么2呢?因为current函数是按引用传递的函数 在zval笔记中说了,一个zval不能既被引用,又被指向所以,变量分离,重新拷贝一份数组专门用于current函数 当然,如果数组zval的is_ref为1,则不会拷贝数组了或者:结果:current是引用传参

杨冬芳 2019-12-02 02:26:33 0 浏览量 回答数 0

问题

在 iOS 中使用 OpenSSL 库:报错

kun坤 2020-06-14 09:43:36 0 浏览量 回答数 0

回答

Python不支持读取oss数据,因此所有调用python的 Open()、 os.path.exist() 等文件和文件夹操作的函数的代码都无法执行。如Scipy.misc.imread()、numpy.load()等。 通常采用以下两种办法在机器学习平台读取数据。 使用tf.gfile下的函数,适用于简单地读取一张图片,或者一个文本等,成员函数如下。 tf.gfile.Copy(oldpath, newpath, overwrite=False) # 拷贝文件 tf.gfile.DeleteRecursively(dirname) # 递归删除目录下所有文件 tf.gfile.Exists(filename) # 文件是否存在 tf.gfile.FastGFile(name, mode='r') # 无阻塞读取文件 tf.gfile.GFile(name, mode='r') # 读取文件 tf.gfile.Glob(filename) # 列出文件夹下所有文件, 支持pattern tf.gfile.IsDirectory(dirname) # 返回dirname是否为一个目录 tf.gfile.ListDirectory(dirname) # 列出dirname下所有文件 tf.gfile.MakeDirs(dirname) # 在dirname下创建一个文件夹, 如果父目录不存在, 会自动创建父目录. 如果 文件夹已经存在, 且文件夹可写, 会返回成功 tf.gfile.MkDir(dirname) # 在dirname处创建一个文件夹 tf.gfile.Remove(filename) # 删除filename tf.gfile.Rename(oldname, newname, overwrite=False) # 重命名 tf.gfile.Stat(dirname) # 返回目录的统计数据 tf.gfile.Walk(top, inOrder=True) # 返回目录的文件树 具体请参考tf.gfile模块。 使用tf.gfile.Glob、tf.gfile.FastGFile、 tf.WhoFileReader() 、tf.train.shuffer_batch(),适用于批量读取文件(读取文件之前需要获取文件列表,如果是批量读取,还需要创建batch)。 使用机器学习搭建深度学习实验时,通常需要在界面右侧设置读取目录、代码文件等参数。这些参数通过“—XXX”(XXX代表字符串)的形式传入,tf.flags提供了这个功能。 import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('buckets', 'oss://{OSS Bucket}/', '训练图片所在文件夹') tf.flags.DEFINE_string('batch_size', '15', 'batch大小') files = tf.gfile.Glob(os.path.join(FLAGS.buckets,'*.jpg')) # 如我想列出buckets下所有jpg文件路径 小规模读取文件时建议使用tf.gfile.FastGfile()。 for path in files: file_content = tf.gfile.FastGFile(path, 'rb').read() # 一定记得使用rb读取, 不然很多情况下都会报错 image = tf.image.decode_jpeg(file_content, channels=3) # 本教程以JPG图片为例 大批量读取文件时建议使用tf.WhoFileReader()。 reader = tf.WholeFileReader() # 实例化一个reader fileQueue = tf.train.string_input_producer(files) # 创建一个供reader读取的队列 file_name, file_content = reader.read(fileQueue) # 使reader从队列中读取一个文件 image_content = tf.image.decode_jpeg(file_content, channels=3) # 讲读取结果解码为图片 label = XXX # 这里省略处理label的过程 batch = tf.train.shuffle_batch([label, image_content], batch_size=FLAGS.batch_size, num_threads=4, capacity=1000 + 3 * FLAGS.batch_size, min_after_dequeue=1000) sess = tf.Session() # 创建Session tf.train.start_queue_runners(sess=sess) # 重要!!! 这个函数是启动队列, 不加这句线程会一直阻塞 labels, images = sess.run(batch) # 获取结果 部分代码解释如下: tf.train.string_input_producer:把files转换成一个队列,并且需要 tf.train.start_queue_runners 来启动队列。 tf.train.shuffle_batch参数解释如下: batch_size:批处理大小。即每次运行这个batch,返回的数据个数。 num_threads:运行线程数,一般设置为4。 capacity:随机取文件范围。比如数据集有10000个数据,需要从5000个数据中随机抽取,那么capacity就设置成5000。 min_after_dequeue:维持队列的最小长度,不能大于capacity。

保持可爱mmm 2020-03-27 15:32:59 0 浏览量 回答数 0

回答

MD5(中文名为消息摘要算法第五版)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护。该算法的文件号为RFC 1321(R.Rivest,MIT Laboratory for Computer Science and RSA Data Security Inc. April 1992)。 MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD5实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。 MD5算法具有以下特点: 1、压缩性:任意长度的数据,算出的MD5值长度都是固定的。 2、容易计算:从原数据计算出MD5值很容易。 3、抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。 4、强抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。 一个工具类 import java.io.UnsupportedEncodingException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.util.Arrays; public class MyMD5Util { private static final String HEX_NUMS_STR="0123456789ABCDEF"; private static final Integer SALT_LENGTH = 12; /** * 将16进制字符串转换成字节数组 * @param hex * @return */ public static byte[] hexStringToByte(String hex) { int len = (hex.length() / 2); byte[] result = new byte[len]; char[] hexChars = hex.toCharArray(); for (int i = 0; i < len; i++) { int pos = i * 2; result[i] = (byte) (HEX_NUMS_STR.indexOf(hexChars[pos]) << 4 | HEX_NUMS_STR.indexOf(hexChars[pos + 1])); } return result; } /** * 将指定byte数组转换成16进制字符串 * @param b * @return */ public static String byteToHexString(byte[] b) { StringBuffer hexString = new StringBuffer(); for (int i = 0; i < b.length; i++) { String hex = Integer.toHexString(b[i] & 0xFF); if (hex.length() == 1) { hex = '0' + hex; } hexString.append(hex.toUpperCase()); } return hexString.toString(); } /** * 验证口令是否合法 * @param password * @param passwordInDb * @return * @throws NoSuchAlgorithmException * @throws UnsupportedEncodingException */ public static boolean validPassword(String password, String passwordInDb) throws NoSuchAlgorithmException, UnsupportedEncodingException { //将16进制字符串格式口令转换成字节数组 byte[] pwdInDb = hexStringToByte(passwordInDb); //声明盐变量 byte[] salt = new byte[SALT_LENGTH]; //将盐从数据库中保存的口令字节数组中提取出来 System.arraycopy(pwdInDb, 0, salt, 0, SALT_LENGTH); //创建消息摘要对象 MessageDigest md = MessageDigest.getInstance("MD5"); //将盐数据传入消息摘要对象 md.update(salt); //将口令的数据传给消息摘要对象 md.update(password.getBytes("UTF-8")); //生成输入口令的消息摘要 byte[] digest = md.digest(); //声明一个保存数据库中口令消息摘要的变量 byte[] digestInDb = new byte[pwdInDb.length - SALT_LENGTH]; //取得数据库中口令的消息摘要 System.arraycopy(pwdInDb, SALT_LENGTH, digestInDb, 0, digestInDb.length); //比较根据输入口令生成的消息摘要和数据库中消息摘要是否相同 if (Arrays.equals(digest, digestInDb)) { //口令正确返回口令匹配消息 return true; } else { //口令不正确返回口令不匹配消息 return false; } } /** * 获得加密后的16进制形式口令 * @param password * @return * @throws NoSuchAlgorithmException * @throws UnsupportedEncodingException */ public static String getEncryptedPwd(String password) throws NoSuchAlgorithmException, UnsupportedEncodingException { //声明加密后的口令数组变量 byte[] pwd = null; //随机数生成器 SecureRandom random = new SecureRandom(); //声明盐数组变量 byte[] salt = new byte[SALT_LENGTH]; //将随机数放入盐变量中 random.nextBytes(salt); //声明消息摘要对象 MessageDigest md = null; //创建消息摘要 md = MessageDigest.getInstance("MD5"); //将盐数据传入消息摘要对象 md.update(salt); //将口令的数据传给消息摘要对象 md.update(password.getBytes("UTF-8")); //获得消息摘要的字节数组 byte[] digest = md.digest(); //因为要在口令的字节数组中存放盐,所以加上盐的字节长度 pwd = new byte[digest.length + SALT_LENGTH]; //将盐的字节拷贝到生成的加密口令字节数组的前12个字节,以便在验证口令时取出盐 System.arraycopy(salt, 0, pwd, 0, SALT_LENGTH); //将消息摘要拷贝到加密口令字节数组从第13个字节开始的字节 System.arraycopy(digest, 0, pwd, SALT_LENGTH, digest.length); //将字节数组格式加密后的口令转化为16进制字符串格式的口令 return byteToHexString(pwd); } } 测试类客户端 import com.huaidan.utils.MyMD5Util; import java.io.UnsupportedEncodingException; import java.security.NoSuchAlgorithmException; import java.util.HashMap; import java.util.Map; public class Client { private static Map users = new HashMap(); public static void main(String[] args){ String userName = "zyg"; String password = "123"; registerUser(userName,password); userName = "changong"; password = "456"; registerUser(userName,password); String loginUserId = "zyg"; String pwd = "123"; try { if(loginValid(loginUserId,pwd)){ System.out.println("欢迎登陆!!!"); }else{ System.out.println("口令错误,请重新输入!!!"); } } catch (NoSuchAlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (UnsupportedEncodingException e) { // TODO Auto-generated catch block e.printStackTrace(); } } /** * 注册用户 * * @param userName * @param password */ public static void registerUser(String userName,String password){ String encryptedPwd = null; try { encryptedPwd = MyMD5Util.getEncryptedPwd(password); System.out.println("加密后的用户密码"+encryptedPwd); users.put(userName, encryptedPwd); } catch (NoSuchAlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (UnsupportedEncodingException e) { // TODO Auto-generated catch block e.printStackTrace(); } } /** * 验证登陆 * * @param userName * @param password * @return * @throws UnsupportedEncodingException * @throws NoSuchAlgorithmException */ public static boolean loginValid(String userName,String password) throws NoSuchAlgorithmException, UnsupportedEncodingException{ String pwdInDb = (String)users.get(userName); System.out.println(pwdInDb); if(null!=pwdInDb){ // 该用户存在 return MyMD5Util.validPassword(password, pwdInDb); }else{ System.out.println("不存在该用户!!!"); return false; } } }

问问小秘 2020-04-30 16:35:36 0 浏览量 回答数 0

回答

每一个进程都有自己的内存虚拟地址空间,内存最小的单位是页(page).虚拟地址通过页表(Page Table)映射到物理内存,页表由操作系统维护并被CPU引用.Linux默认的栈(stack)大小为8MB.用户进程部分分段存储内容如下所示(从内存高地址到低地址):栈(stack): 函数参数、返回地址、局部变量等堆(heap): malloc(C)/new(C++)动态分配的内存BSS段(bss): 未初始化或初值为0的全局变量和静态局部变量数据段(data): 已初始化且初值非0的全局变量和静态局部变量代码段(text): 可执行代码、字符串字面值、只读变量详细解释:1.内核空间内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留,不允许应用程序读写该区域的内容或直接调用内核代码定义的函数。2.栈(stack)栈又称堆栈,由编译器自动分配释放,行为类似数据结构中的栈(先进后出)。堆栈主要有三个用途:(1)为函数内部声明的非静态局部变量(C语言中称“自动变量”)提供存储空间。(2)记录函数调用过程相关的维护性信息,称为栈帧(Stack Frame)或过程活动记录(Procedure Activation Record)。它包括函数返回地址,不适合装入寄存器的函数参数及一些寄存器值的保存。除递归调用外,堆栈并非必需。因为编译时可获知局部变量,参数和返回地址所需空间,并将其分配于BSS段。(3)临时存储区,用于暂存长算术表达式部分计算结果或alloca()函数分配的栈内内存。持续地重用栈空间有助于使活跃的栈内存保持在CPU缓存中,从而加速访问。进程中的每个线程都有属于自己的栈。向栈中不断压入数据时,若超出其容量就会耗尽栈对应的内存区域,从而触发一个页错误。此时若栈的大小低于堆栈最大值RLIMIT_STACK(Linux通常是8M),则栈会动态增长,程序继续运行。映射的栈区扩展到所需大小后,不再收缩。Linux中ulimit -s命令可查看和设置堆栈最大值,当程序使用的堆栈超过该值时, 发生栈溢出(Stack Overflow),程序收到一个段错误(Segmentation Fault)。注意,调高堆栈容量可能会增加内存开销和启动时间。堆栈既可向下增长(向内存低地址)也可向上增长, 这依赖于具体的实现。本文所述堆栈向下增长。堆栈的大小在运行时由内核动态调整。3.内存映射段(mmap)此处,内核将硬盘文件的内容直接映射到内存,任何应用程序都可通过Linux的mmap()系统调用或Windows的CreateFileMapping()/MapViewOfFile()请求这种映射。内存映射是一种方便高效的文件I/O方式,因而被用于装载动态共享库。用户也可创建匿名内存映射,该映射没有对应的文件,可用于存放程序数据。在Linux中,若通过malloc()请求一大块内存,C运行库将创建一个匿名内存映射,而不使用堆内存。“大块”意味着比阈值MMAP_THRESHOLD还大,缺省为128KB,可通过mallopt()调整。该区域用于映射可执行文件用到的动态链接库。在Linux 2.4内核中,若可执行文件依赖共享库,则系统会为这些动态库在从0x40000000开始的地址分配相应空间,并在程序装载时将其载入到该空间。在Linux 2.6内核中,共享库的起始地址被往上移动至更靠近栈区的位置。从进程地址空间的布局可以看到,在有共享库的情况下,留给堆的可用空间还有两处:一处是从BSS段到0x40000000,约不到1GB的空间;另一处是从共享库到栈之间的空间,约不到2GB。这两块空间大小取决于栈、共享库的大小和数量。这样来看,是否应用程序可申请的最大堆空间只有2GB?事实上,这与Linux内核版本有关。在上面给出的进程地址空间经典布局图中,共享库的装载地址为0x40000000,这实际上是Linux kernel 2.6版本之前的情况了,在2.6版本里,共享库的装载地址已经被挪到靠近栈的位置,即位于0xBFxxxxxx附近,因此,此时的堆范围就不会被共享库分割成2个“碎片”,故kernel 2.6的32位Linux系统中,malloc申请的最大内存理论值在2.9GB左右。4.堆(heap)堆用于存放进程运行时动态分配的内存段,可动态扩张或缩减。堆中内容是匿名的,不能按名字直接访问,只能通过指针间接访问。当进程调用malloc(C)/new(C++)等函数分配内存时,新分配的内存动态添加到堆上(扩张);当调用free(C)/delete(C++)等函数释放内存时,被释放的内存从堆中剔除(缩减) 。分配的堆内存是经过字节对齐的空间,以适合原子操作。堆管理器通过链表管理每个申请的内存,由于堆申请和释放是无序的,最终会产生内存碎片。堆内存一般由应用程序分配释放,回收的内存可供重新使用。若程序员不释放,程序结束时操作系统可能会自动回收。堆的末端由break指针标识,当堆管理器需要更多内存时,可通过系统调用brk()和sbrk()来移动break指针以扩张堆,一般由系统自动调用。使用堆时经常出现两种问题:(1) 释放或改写仍在使用的内存(“内存破坏”);(2) 未释放不再使用的内存(“内存泄漏”)。当释放次数少于申请次数时,可能已造成内存泄漏。泄漏的内存往往比忘记释放的数据结构更大,因为所分配的内存通常会圆整为下个大于申请数量的2的幂次(如申请212B,会圆整为256B)。注意,堆不同于数据结构中的”堆”,其行为类似链表。5.BSS段BSS(Block Started by Symbol)段中通常存放程序中以下符号:未初始化的全局变量和静态局部变量.初始值为0的全局变量和静态局部变量(依赖于编译器实现).未定义且初值不为0的符号(该初值即common block的大小).C语言中,未显式初始化的静态分配变量被初始化为0(算术类型)或空指针(指针类型)。由于程序加载时,BSS会被操作系统清零,所以未赋初值或初值为0的全局变量都在BSS中。BSS段仅为未初始化的静态分配变量预留位置,在目标文件中并不占据空间,这样可减少目标文件体积。但程序运行时需为变量分配内存空间,故目标文件必须记录所有未初始化的静态分配变量大小总和(通过start_bss和end_bss地址写入机器代码)。当加载器(loader)加载程序时,将为BSS段分配的内存初始化为0。在嵌入式软件中,进入main()函数之前BSS段被C运行时系统映射到初始化为全零的内存(效率较高)。注意,尽管均放置于BSS段,但初值为0的全局变量是强符号,而未初始化的全局变量是弱符号。若其他地方已定义同名的强符号(初值可能非0),则弱符号与之链接时不会引起重定义错误,但运行时的初值可能并非期望值(会被强符号覆盖)。因此,定义全局变量时,若只有本文件使用,则尽量使用static关键字修饰;否则需要为全局变量定义赋初值(哪怕0值),保证该变量为强符号,以便链接时发现变量名冲突,而不是被未知值覆盖。某些编译器将未初始化的全局变量保存在common段,链接时再将其放入BSS段。在编译阶段可通过-fno-common选项来禁止将未初始化的全局变量放入common段。此外,由于目标文件不含BSS段,故程序烧入存储器(Flash)后BSS段地址空间内容未知。U-Boot(一个嵌入式操作系统引导程序)启动过程中,将U-Boot的Stage2代码(通常位于lib_xxxx/board.c文件)搬迁(拷贝)到SDRAM空间后必须人为添加清零BSS段的代码,而不可依赖于Stage2代码中变量定义时赋0值。BSS段不包含数据,仅维护开始和结束地址,以便内存能在运行时被有效地清零。BSS所需的运行时空间由目标文件记录,但BSS并不占用目标文件内的实际空间,即BSS节段应用程序的二进制映象文件中并不存在。6.数据段(data)数据段通常用于存放程序中已初始化且初值不为0的全局变量和静态局部变量。数据段属于静态内存分配(静态存储区),可读可写。数据段保存在目标文件中(在嵌入式系统里一般固化在镜像文件中),其内容由程序初始化。例如,对于全局变量int gVar = 10,必须在目标文件数据段中保存10这个数据,然后在程序加载时复制到相应的内存。数据段与BSS段的区别如下: (1) BSS段不占用物理文件尺寸,但占用内存空间;数据段占用物理文件,也占用内存空间。对于大型数组如int ar0[10000] = {1, 2, 3, ...}和int ar1[10000],ar1放在BSS段,只记录共有10000*4个字节需要初始化为0,而不是像ar0那样记录每个数据1、2、3...,此时BSS为目标文件所节省的磁盘空间相当可观。(2) 当程序读取数据段的数据时,系统会发出缺页故障,从而分配相应的物理内存;当程序读取BSS段的数据时,内核会将其转到一个全零页面,不会发生缺页故障,也不会为其分配相应的物理内存。运行时数据段和BSS段的整个区段通常称为数据区。某些资料中“数据段”指代数据段 + BSS段 + 堆。7.代码段(text)代码段也称正文段或文本段,通常用于存放程序执行代码(即CPU执行的机器指令)。一般C语言执行语句都编译成机器代码保存在代码段。通常代码段是可共享的,因此频繁执行的程序只需要在内存中拥有一份拷贝即可。代码段通常属于只读,以防止其他程序意外地修改其指令(对该段的写操作将导致段错误)。某些架构也允许代码段为可写,即允许修改程序。代码段指令根据程序设计流程依次执行,对于顺序指令,只会执行一次(每个进程);若有反复,则需使用跳转指令;若进行递归,则需要借助栈来实现。代码段指令中包括操作码和操作对象(或对象地址引用)。若操作对象是立即数(具体数值),将直接包含在代码中;若是局部数据,将在栈区分配空间,然后引用该数据地址;若位于BSS段和数据段,同样引用该数据地址。代码段最容易受优化措施影响。8.保留区(reservd)位于虚拟地址空间的最低部分,未赋予物理地址。任何对它的引用都是非法的,用于捕捉使用空指针和小整型值指针引用内存的异常情况。它并不是一个单一的内存区域,而是对地址空间中受到操作系统保护而禁止用户进程访问的地址区域的总称。大多数操作系统中,极小的地址通常都是不允许访问的,如NULL。C语言将无效指针赋值为0也是出于这种考虑,因为0地址上正常情况下不会存放有效的可访问数据。在32位x86架构的Linux系统中,用户进程可执行程序一般从虚拟地址空间0x08048000开始加载。该加载地址由ELF文件头决定,可通过自定义链接器脚本覆盖链接器默认配置,进而修改加载地址。0x08048000以下的地址空间通常由C动态链接库、动态加载器ld.so和内核VDSO(内核提供的虚拟共享库)等占用。通过使用mmap系统调用,可访问0x08048000以下的地址空间。

a123456678 2019-12-02 02:41:17 0 浏览量 回答数 0

回答

我怎么感觉 在加个ip字段呢,只能你这台Ip能用这个密码来登陆######回复 @f223156 : 额,那就不行了.######回复 @妹夫 : 这办法是能取到, 但前提是你的访客和你的服务器在同一个局域网内######回复 @f223156 : http不可以,但是java可以啊,http://babyduncan.iteye.com/blog/892351######回复 @妹夫 @止殇 : 你们想多了, http根本获取不到访问者的mac######而且mac可以仿造啊###### 第一种解决方案就是sessionID的值只允许cookie设置,而不是通过URL重置方式设置,同时设置cookie的httponly为true。 第二种就是在每个请求里面加上token,每个请求里面加上一个隐藏的token,然后每次验证这个token,从而保证用户的请求都是唯一性。 结合第一种和第二种更安全。 ######回复 @xiaochong0302 : 这个不敢苟同,cookie是存在客户端的,客户端被人盗走cookie是你管得了的吗?而服务器我可以管着不让别人偷走了。######回复 @妹夫 : 都能拷贝你的cookie了,你还防个P,你要这样想,那服务器被被人抱走了怎么办?######谢谢哥们儿,第一种,只能防止xss攻击是么?别人拷贝了你的cookie到他的浏览器cookie文件夹里面照样可以实现自动登录。 第二种没怎么明白,请哥们儿不吝赐教啊###### 引用来自“viney”的答案 第一种解决方案就是sessionID的值只允许cookie设置,而不是通过URL重置方式设置,同时设置cookie的httponly为true。 第二种就是在每个请求里面加上token,每个请求里面加上一个隐藏的token,然后每次验证这个token,从而保证用户的请求都是唯一性。 结合第一种和第二种更安全。 第二种方式也很简单,每次请求的时候给隐藏域里加一个token知道,每次验证这个token,最好加上过期时间(token的过期时间) ###### @红薯  能不能介绍一下osc怎么实现自动登录的###### 以前我是这样搞的: 把用户对象(包含了用户ID、用户名、是否登录..)序列化成字符串再加密存入Cookie。 密钥是:客户端IP+浏览器Agent+用户标识+固定的私有密钥 当cookie被窃取后,只要任一信息不匹配,就无法解密cookie,进而也就不能登录了。 这样做的缺点是IP不能变动、频繁加密解密会加重CPU负担 ######回复 @妹夫 : 又要安全性高,还要自动登录,根本就是伪命题么, 你看哪家银行网站会让你自动登录的。######恩,这样确实加大了仿冒用户登录的难度,但是要强制去匹配你的这些条件也是能做到的伐?这个确实是个解决办法。######防止cookie被盗取 首先要防止程序中XSS漏洞出现 其次设置cookie的HttpOnly方法 参考: http://www.oschina.net/question/12_72706 http://www.oschina.net/question/248973_113795 ###### o,如果被获取到cookie的话,你session也一样是死。 你真的很害怕的话可以这样子: 加密函数(用户id,服务器端密匙,客户端信息加密(ip,浏览器等)) 不可逆的话存 结果和用户id,可逆的话存结果 ###### 排除和目标机器物理接触, 能截到cookie的信息的, user-agent之类的信息同样能获取, 所以,除非绑定IP, 不然怎么加密都是做给瞎子看而已 说穿了, 排除诸如xss之类的程序安全问题, 唯有https才能最大限度的防止被嗅听或者劫持

kun坤 2020-06-08 11:25:00 0 浏览量 回答数 0

回答

不变模式的结构  不变模式可增强对象的强壮型(robustness)。不变模式允许多个对象共享某一个对象,降低了对该对象进行并发访问时的同步化开销。如果需要修改一个不变对象的状态,那么就需要建立一个新的同类型对象,并在创建时将这个新的状态存储在新对象里。  不变模式只涉及到一个类。一个类的内部状态创建后,在整个生命周期都不会发生变化时,这样的类称作不变类。这种使用不变类的做法叫做不变模式。不变模式有两种形式:一种是弱不变模式,另一种是强不变模式。 弱不变模式  一个类的实例的状态是不可改变的;但是这个类的子类的实例具有可能会变化的状态。这样的类符合弱不变模式的定义。要实现弱不变模式,一个类必须满足下面条件:  第一、所考虑的对象没有任何方法会修改对象的状态;这样一来,当对象的构造函数将对象的状态初始化之后,对象的状态便不再改变。  第二、所有属性都应当是私有的。不要声明任何的公开的属性,以防客户端对象直接修改任何的内部状态。  第三、这个对象所引用到的其他对象如何是可变对象的话,必须设法限制外界对这些可变对象的访问,以防止外界修改这些对象。如何可能,应当尽量在不变对象内部初始化这些被引用的对象,而不要在客户端初始化,然后再传入到不变对象内部来。如果某个可变对象必须在客户端初始化,然后再传入到不变对象里的话,就应当考虑在不变对象初始化的时候,将这个可变对象复制一份,而不要使用原来的拷贝。  弱不变模式的缺点是:  第一、一个弱不变对象的子对象可以是可变对象;换言之,一个弱不变对象的子对象可能是可变的。  第二、这个可变的子对象可能可以修改父对象的状态,从而可能会允许外界修改父对象的状态。 强不变模式  一个类的实例不会改变,同时它的子类的实例也具有不可变化的状态。这样的类符合强不变模式。要实现强不变模式,一个类必须首先满足弱不变模式所要求的所有条件,并且还有满足下面条件之一:  第一、所考虑的类所有的方法都应当是final,这样这个类的子类不能够置换掉此类的方法。  第二、这个类本身就是final的,那么这个类就不可能会有子类,从而也就不可能有被子类修改的问题。 “不变"和"只读"的区别  "不变"(Immutable)与"只读"(Read Only)是不同的。当一个变量是”只读“时,变量的值不能直接改变,但是可以在其他变量发生改变的时候发生改变。  比如,一个人的出生年月日是”不变“属性,而一个人的年龄便是”只读“属性,不是”不变“属性。随着时间的变化,一个人的年龄会随之发生变化,而人的出生年月日则不会变化。这就是”不变“和“只读”的区别。不变模式在JAVA中最著名的应用便是java.lang.String类。String类是一个强不变类型,在出现如下的语句时: String a = "test"; String b = "test"; String c = "test"; JAVA虚拟机其实只会创建这样一个字符串的实例,而这三个String对象都在共享这一个值。不变模式有很明显的优点:  (1)因为不能修改一个不变对象的状态,所以可以避免由此引起的不必要的程序错误;换言之,一个不变的对象要比可变的对象更加容易维护。  (2)因为没有任何一个线程能够修改不变对象的内部状态,一个不变对象自动就是线程安全的,这样就可以省掉处理同步化的开销。一个不变对象可以自由地被不同的客户端共享。  不变模式的缺点:  不变模式唯一的缺点是:一旦需要修改一个不变对象的状态,就只好创建一个新的同类对象。在需要频繁修改不变对象的环境里,会有大量的不变对象作为中间结果被创建出来,再被JAVA垃圾收集器收集走。这是一种资源上的浪费。  在设计任何一个类的时候,应当慎重考虑其状态是否有需要变化的可能性。除非其状态有变化的必要,不然应当将它设计成不变类。

蛮大人123 2019-12-02 02:46:58 0 浏览量 回答数 0

问题

在Eclipse中配置Heritrix HTTP ERROR 403.10 禁止访问:配置无效

kun坤 2020-05-27 20:05:38 7 浏览量 回答数 1

回答

基础类 常见十大算法 优劣术语稳定性 原本a在b前,a=b,排序之后位置任然不变。不稳定性则相反内排序 所有排序都在内存中完成。外排序数据放磁盘,排序通过磁盘内存的数据传输事件复杂度 算法执行耗费的时间 空间复杂度 算法执行耗费的内存 In/out-place: 不占/占额外内存 冒泡排序: 选择排序: 插入排序: 希尔排序: 归并排序: 快速排序: 堆排序: 计数排序: 桶排序: 基数排序: 提高类 常见算法面试题 Problem 1 : Is it a loop ? (判断链表是否有环?) Assume that wehave a head pointer to alink-list. Also assumethat we know the list is single-linked. Can you come upan algorithm to checkwhether this link list includes a loop by using O(n) timeand O(1) space wheren is the length of the list? Furthermore, can you do sowith O(n) time and onlyone register? 方法:使用两个指针,从头开始,一个一次前进一个节点,一个前进2个节点,则最多2N,后两个指针可以重合;如果无环,则正常停止。 同样的,可以找到链表的中间节点。同上。 Problem 2:设计一个复杂度为n的算法找到链表倒数第m个元素。最后一个元素假定是倒数第0个。 提示:双指针查找 Problem 3:用最简单的方法判断一个LONG整形的数A是2^n(2的n次方) 提示:x&(x-1) Problem 4:两个烧杯,一个放糖一个放盐,用勺子舀一勺糖到盐,搅拌均匀,然后舀一勺混合物会放糖的烧杯,问你两个烧杯哪个杂质多? 提示:相同。假设杂质不等,那么将杂质放回原杯中,则杯中物体重量必变化,不合理。 Problem 5:给你a、b两个文件,各存放50亿条url,每条url各占用64字节,内存限制是4G,让你找出a、b文件共同的url。 法1:使用hash表。使用a中元素创建hash表,hash控制在适当规模。在hash中查找b的元素,找不到的url先存在新文件中,下次查找。如果找到,则将相应的hash表项删除,当hash表项少于某个阈值时,将a中新元素重新hash。再次循环。 法2:对于hash表项增加一项记录属于的文件a,b。只要不存在的表项即放入hash表中,一致的项则删除。注意:可能存在很多重复项,引起插入,删除频繁。 Problem 6:给你一个单词a,如果通过交换单词中字母的顺序可以得到另外的单词b,那么定义b是a的兄弟单词。现在给你一个字典,用户输入一个单词,让你根据字典找出这个单词有多少个兄弟单词。 提示:将每个的单词按照字母排序,则兄弟单词拥有一致的字母排序(作为单词签名)。使用单词签名来查找兄弟单词。 Problem 7:五桶球,一桶不正常,不知道球的重量和轻重关系,用天平称一次找出那桶不正常的球。 Problem 8:给两个烧杯,容积分别是m和n升(m!=n),还有用不完的水,用这两个烧杯能量出什么容积的水? m, n, m+n, m-n以及线性叠加的组合 Problem 9:写出一个算法,对给定的n个数的序列,返回序列中的最大和最小的数。 Problem 10:你能设计出一个算法,只需要执行1.5n次比较就能找到序列中最大和最小的数吗?能否再少? 提示:先通过两两比较,区分大小放入“大”,“小”两个数组中。从而最大数在“大”数组中,最小数在“小”数组中。 Problem 11:给你一个由n-1个整数组成的未排序的序列,其元素都是1到n中的不同的整数。请写出一个寻找序列中缺失整数的线性-时间算法。 提示:累加求和 Problem 12:void strton(constchar* src, const char*token) 假设src是一长串字符,token存有若干分隔符,只要src的字符是token中的任何一个,就进行分割,最终将src按照token分割成若干单词。找出一种O(n)算法? 提示:查表的方法,将所有的字符串存储在长度为128的数组中,并将作为分隔符的字符位置1,这样即可用常数时间判断字符是否为分隔符,通过n次扫描,将src分割成单词。 Problem 13:一个排好序的数组A,长度为n,现在将数组A从位置m(m<n,m未知)分开,并将两部分互换位置,假设新数组记为B,找到时间复杂度为O(lgn)的算法查找给定的数x是否存在数组B中? 提示:同样采用二分查找。核心思想就是确定所查找数所在的范围。通过比较3个数(头,尾,中间)和所查找数之间的关系,可以确定下次查找的范围。 Problem 14:一个排好序的数组A,长度为n,现在将数组A从位置m(m<n,m已知)分开,并将两部分互换位置,设计一个O(n)的算法实现这样的倒置,只允许使用一个额外空间。(循环移位的效率不高) 提示:(A’B’)’ =BA Problem 15:给出Vector的一个更好实现。(STL的vector内存的倍增的,但是每次倍增需要拷贝已存元素,平均每个元素需要拷贝一次,效率不高) 提示:可使用2^n的固定长度作为每次分配的最小单位,并有序的记录每个块的首地址。这中结构同样可以实现线性查找,并且拷贝代价很低(仅有指针) Problem 16:给出已排序数组A,B,长度分别为n,m,请找出一个时间复杂度为(lgn)的算法,找到排在第k位置的数。 提示:二分查找。 Problem 17:给出任意数组A,B,长度分别为n,m,请找出一个时间复杂度为(lgn)的算法,找到排在第k位置的数。 提示:通过最小堆记录k个数,不断更新,扫描一次完毕。 这个提示有问题,求最优算法! Problem 18:假设数组A有n个元素,元素取值范围是1~n,判定数组是否存在重复元素?要求复杂度为O(n)。 法1:使用n的数组,记录元素,存在记为1,两次出现1,即重复。 法2:使用m的数组,分别记录大小:n/m, 2n/m …..的元素个数。桶方法 法3:累加求和。可用于求仅有一个元素重复的方法。 Problem 19:给定排好序的数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X。给出一个O(n)的算法。 提示:从中间向两边查找。利用有序的条件 Problem 20:给定排好序的数组A,大小为n,请给出一个O(n)的算法,删除重复元素,且不能使用额外空间。 提示,既然有重复,必有冗余空间。将元素放入数组的前面,并记录下次可放位置,不断向后扫描即可。 Problem 21:给定两个排好序的数组A,B,大小分别为n,m。给出一个高效算法查找A中的哪些元素存在B数组中。 注意:一般在大数组中执行二分查找,将小数组的元素作为需查找的对象。 更优算法(轩辕刃提供):可以使用两个指针遍历AB,比较当前大小就可以了...时间复杂度o(n+m) Problem 22:问:有1000桶酒,其中1桶有毒。而一旦吃了,毒性会在1周后发作。现在我们用小老鼠做实验,要在1周内找出那桶毒酒,问最少需要多少老鼠。 答案:10只。将酒编号为1~1000 将老鼠分别编号为1 2 4 8 16 32 64 128 256 512 喂酒时 让酒的编号等于老鼠编号的加和如:17号酒喂给1号和16号老鼠 76号酒喂给4号、8号和64号老鼠 七天后将死掉的老鼠编号加起来 得到的编号就是有毒的那桶酒 因为2的10次方等于1024 所以10只老鼠最多可以测1024桶酒 证明如下:使用二进制表示:01, 10, 100, 1000,… , 1,000,000,000。对于任何一个小于1024的数,均可以采用前面的唯一一组二进制数来表示。故成立。 Problem 23:设计一组最少个数砝码,使得天平能够称量1~1000的重量。 如果砝码只能放单边,1,2 ,4 , 512最好。(只能单加) 如果允许砝码双边放,1, 3, 9, 27…. 最好。(可加可减)已知1,3,如何计算下一个数。现可称重量1,2,3,4。设下个数为x,可称重量为, x-4, x-3, x-2, x-1, x, x+1,x+2, x+3, x+4。为使砝码最好,所称重量应该不重复(浪费)。故x=9。同理,可得后面。 图形算法题 Problem 24:如何判断一个点是否在一个多边形内? 提示:对多边形进行分割,成为一个个三角形,判断点是否在三角形内。 一个非常有用的解析几何结论:如果P2(x1,y1),P2(x2,y2),P3(x3,y3)是平面上的3个点,那么三角形P1P2P3的面积等于下面绝对值的二分之一: | x1 y1 1 | | x2 y2 1 | = x1y2 + x3y1 + x2y3 –x3y2 – x2y1 – x1y3 | x3 y3 1 | 当且仅当点P3位于直线P1P2(有向直线P1->P2)的右侧时,该表达式的符号为正。这个公式可以在固定的时间内,检查一个点位于两点确定直线的哪侧,以及点到直线的距离(面积=底*高/2)。 这个结论:可以用来判断点是否在点是否在三角形内。法1:判断点和三角形三边所行程的3个三角形的面积之和是否等于原来三角形的面积。(用了三次上面的公式)。 法2:判断是否都在三条边的同一边,相同则满足,否则不在三角形内。 Problem 25:给出两个n为向量与0点形成角的角平分线。 提示:对两条边进行归一化,得到长度为1的两点,取两个的中点即可。 实战类型 1,确定函数名字与原型 2,严进宽出 3,边界考虑 4,出错处理 5,性能优化(时间复杂度,空间复杂度) 6,循环的掌握 7,递归的应用 8,2个指针跑步 9, Hash算法

happycc 2019-12-02 02:11:37 0 浏览量 回答数 0

问题

小白学习IOT 第七课 MQTT服务器下发TOPIC到设备

洵云 2019-12-01 20:59:15 4210 浏览量 回答数 5

问题

小白学习IOT 第四课 服务器下发TOPIC到设备

洵云 2019-12-01 20:55:41 2458 浏览量 回答数 1

问题

十大经典排序算法最强总结(内含代码实现)

游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板