• 关于

    批处理命令学习

    的搜索结果

回答

可以画一个这样的技术栈图先,然后分别解释下每个组件的功能和场景 1)Spark core:是其它组件的基础,spark的内核,主要包含:有向循环图、RDD、Lingage、Cache、broadcast等,并封装了底层通讯框架,是Spark的基础。 2)SparkStreaming是一个对实时数据流进行高通量、容错处理的流式处理系统,可以对多种数据源(如Kdfka、Flume、Twitter、Zero和TCP 套接字)进行类似Map、Reduce和Join等复杂操作,将流式计算分解成一系列短小的批处理作业。 3)Spark sql:Shark是SparkSQL的前身,Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行外部查询,同时进行更复杂的数据分析 4)BlinkDB :是一个用于在海量数据上运行交互式 SQL 查询的大规模并行查询引擎,它允许用户通过权衡数据精度来提升查询响应时间,其数据的精度被控制在允许的误差范围内。 5)MLBase是Spark生态圈的一部分专注于机器学习,让机器学习的门槛更低,让一些可能并不了解机器学习的用户也能方便地使用MLbase。MLBase分为四部分:MLlib、MLI、ML Optimizer和MLRuntime。 6)GraphX是Spark中用于图和图并行计算
珍宝珠 2019-12-02 03:06:10 0 浏览量 回答数 0

回答

Linux这么多命令,通常会让初学者望而生畏。下面是我结合日常工作,以及在公司的内部培训中,针对对Linux不是很熟悉的同学,精选的一批必须要搞懂的命令集合。 任何一个命令其实都是可以深入的,比如tail -f和tail -F的区别。我们不去关心,只使用最常见的示例来说明。本文不会教你具体的用法,那是抢man命令的饭碗。这只是个引导篇,力求简洁。 学习方式:多敲多打,用条件反射替代大脑记忆—如果你将来或者现在要用它来吃饭的话。其中,也有一些难啃的骨头,关注小姐姐味道微信公众号,我们一起用锋利的牙齿,来把它嚼碎。 内容: ✔ 目录操作 ✔ 文本处理 ✔ 压缩 ✔ 日常运维 ✔ 系统状态概览 ✔ 工作常用 目录操作 工作中,最常打交道的就是对目录和文件的操作。linux提供了相应的命令去操作他,并将这些命令抽象、缩写。 基本操作 可能是这些命令太常用了,多打一个字符都是罪过。所以它们都很短,不用阿拉伯数字,一个剪刀手就能数过来。 看命令。 mkdir 创建目录 make dir cp 拷贝文件 copy mv 移动文件 move rm 删除文件 remove 例子: # 创建目录和父目录a,b,c,d mkdir -p a/b/c/d # 拷贝文件夹a到/tmp目录 cp -rvf a/ /tmp/ # 移动文件a到/tmp目录,并重命名为b mv -vf a /tmp/b # 删除机器上的所有文件 rm -rvf / 漫游 linux上是黑漆漆的命令行,依然要面临人生三问:我是谁?我在哪?我要去何方? ls 命令能够看到当前目录的所有内容。ls -l能够看到更多信息,判断你是谁。 pwd 命令能够看到当前终端所在的目录。告诉你你在哪。 cd 假如你去错了地方,cd命令能够切换到对的目录。 find find命令通过筛选一些条件,能够找到已经被遗忘的文件。 至于要去何方,可能就是主宰者的意志了。 文本处理 这是是非常非常加分的技能。get到之后,也能节省更多时间来研究面向对象。 查看文件 cat 最常用的就是cat命令了,注意,如果文件很大的话,cat命令的输出结果会疯狂在终端上输出,可以多次按ctrl+c终止。 # 查看文件大小 du -h file # 查看文件内容 cat file less 既然cat有这个问题,针对比较大的文件,我们就可以使用less命令打开某个文件。 类似vim,less可以在输入/后进入查找模式,然后按n(N)向下(上)查找。 有许多操作,都和vim类似,你可以类比看下。 tail 大多数做服务端开发的同学,都了解这么命令。比如,查看nginx的滚动日志。 tail -f access.log tail命令可以静态的查看某个文件的最后n行,与之对应的,head命令查看文件头n行。但head没有滚动功能,就像尾巴是往外长的,不会反着往里长。 tail -n100 access.log head -n100 access.log 统计 sort和uniq经常配对使用。 sort可以使用-t指定分隔符,使用-k指定要排序的列。 下面这个命令输出nginx日志的ip和每个ip的pv,pv最高的前10 #2019-06-26T10:01:57+08:00|nginx001.server.ops.pro.dc|100.116.222.80|10.31.150.232:41021|0.014|0.011|0.000|200|200|273|-|/visit|sign=91CD1988CE8B313B8A0454A4BBE930DF|-|-|http|POST|112.4.238.213 awk -F"|" '{print $3}' access.log | sort | uniq -c | sort -nk1 -r | head -n10 其他 grep grep用来对内容进行过滤,带上--color参数,可以在支持的终端可以打印彩色,参数n则输出具体的行数,用来快速定位。 比如:查看nginx日志中的POST请求。 grep -rn --color POST access.log 推荐每次都使用这样的参数。 如果我想要看某个异常前后相关的内容,就可以使用ABC参数。它们是几个单词的缩写,经常被使用。 A after 内容后n行 B before 内容前n行 C count? 内容前后n行 就像是这样: grep -rn --color Exception -A10 -B2 error.log diff diff命令用来比较两个文件是否的差异。当然,在ide中都提供了这个功能,diff只是命令行下的原始折衷。对了,diff和patch还是一些平台源码的打补丁方式,你要是不用,就pass吧。 压缩 为了减小传输文件的大小,一般都开启压缩。linux下常见的压缩文件有tar、bzip2、zip、rar等,7z这种用的相对较少。 .tar 使用tar命令压缩或解压 .bz2 使用bzip2命令操作 .gz 使用gzip命令操作 .zip 使用unzip命令解压 .rar 使用unrar命令解压 最常用的就是.tar.gz文件格式了。其实是经过了tar打包后,再使用gzip压缩。 创建压缩文件 tar cvfz archive.tar.gz dir/ 解压 tar xvfz. archive.tar.gz 日常运维 开机是按一下启动按钮,关机总不至于是长按启动按钮吧。对了,是shutdown命令,不过一般也没权限-.-!。passwd命令可以用来修改密码,这个权限还是可以有的。 mount mount命令可以挂在一些外接设备,比如u盘,比如iso,比如刚申请的ssd。可以放心的看小电影了。 mount /dev/sdb1 /xiaodianying chown chown 用来改变文件的所属用户和所属组。 chmod 用来改变文件的访问权限。 这两个命令,都和linux的文件权限777有关。 示例: # 毁灭性的命令 chmod 000 -R / # 修改a目录的用户和组为 xjj chown -R xjj:xjj a # 给a.sh文件增加执行权限(这个太常用了) chmod a+x a.sh yum 假定你用的是centos,则包管理工具就是yum。如果你的系统没有wget命令,就可以使用如下命令进行安装。 yum install wget -y systemctl 当然,centos管理后台服务也有一些套路。service命令就是。systemctl兼容了service命令,我们看一下怎么重启mysql服务。 推荐用下面这个。 service mysql restart systemctl restart mysqld 对于普通的进程,就要使用kill命令进行更加详细的控制了。kill命令有很多信号,如果你在用kill -9,你一定想要了解kill -15以及kill -3的区别和用途。 su su用来切换用户。比如你现在是root,想要用xjj用户做一些勾当,就可以使用su切换。 su xjj su - xjj -可以让你干净纯洁的降临另一个账号,不出意外,推荐。 系统状态概览 登陆一台linux机器,有些命令能够帮助你快速找到问题。这些命令涵盖内存、cpu、网络、io、磁盘等。 uname uname命令可以输出当前的内核信息,让你了解到用的是什么机器。 uname -a ps ps命令能够看到进程/线程状态。和top有些内容重叠,常用。 找到java进程 ps -ef|grep java top 系统状态一览,主要查看。cpu load负载、cpu占用率。使用内存或者cpu最高的一些进程。下面这个命令可以查看某个进程中的线程状态。 top -H -p pid free top也能看内存,但不友好,free是专门用来查看内存的。包括物理内存和虚拟内存swap。 df df命令用来查看系统中磁盘的使用量,用来查看磁盘是否已经到达上限。参数h可以以友好的方式进行展示。 df -h ifconfig 查看ip地址,不啰嗦,替代品是ip addr命令。 ping 至于网络通不通,可以使用ping来探测。(不包括那些禁ping的网站) netstat 虽然ss命令可以替代netstat了,但现实中netstat仍然用的更广泛一些。比如,查看当前的所有tcp连接。 netstat -ant 此命令,在找一些本地起了什么端口之类的问题上,作用很大。 工作常用 还有一些在工作中经常会用到的命令,它们的出现频率是非常高的 ,都是些熟面孔。 export 很多安装了jdk的同学找不到java命令,export就可以帮你办到它。export用来设定一些环境变量,env命令能看到当前系统中所有的环境变量。比如,下面设置的就是jdk的。 export PATH=$PATH:/home/xjj/jdk/bin 有时候,你想要知道所执行命令的具体路径。那么就可以使用whereis命令,我是假定了你装了多个版本的jdk。 crontab 这就是linux本地的job工具。不是分布式的,你要不是运维,就不要用了。比如,每10分钟提醒喝茶上厕所。 */10 * * * * /home/xjj/wc10min date date命令用来输出当前的系统时间,可以使用-s参数指定输出格式。但设置时间涉及到设置硬件,所以有另外一个命令叫做hwclock。 xargs xargs读取输入源,然后逐行处理。这个命令非常有用。举个栗子,删除目录中的所有class文件。 find . | grep .class$ | xargs rm -rvf #把所有的rmvb文件拷贝到目录 ls *.rmvb | xargs -n1 -i cp {} /mount/xiaodianying 网络 linux是一个多作业的网络操作系统,所以网络命令有很多很多。工作中,最常和这些打交道。 ssh 这个,就不啰嗦了。你一定希望了解ssh隧道是什么。你要是想要详细的输出过程,记得加参数-v。 scp scp用来进行文件传输。也可以用来传输目录。也有更高级的sftp命令。 scp a.txt 192.168.0.12:/tmp/a.txt scp -r a_dir 192.168.0.12:/tmp/ wget 你想要在服务器上安装jdk,不会先在本地下载下来,然后使用scp传到服务器上吧(有时候不得不这样)。wget命令可以让你直接使用命令行下载文件,并支持断点续传。 wget -c http://oracle.fuck/jdk2019.bin mysql mysql应用广泛,并不是每个人都有条件用上navicat的。你需要了解mysql的连接方式和基本的操作,在异常情况下才能游刃有余。 mysql -u root -p -h 192.168.1.2
问问小秘 2020-04-01 10:52:50 0 浏览量 回答数 0

回答

因为Python是跨平台的,它可以运行在Windows、Mac和各种Linux/Unix系统上。在Windows上写Python程序,放到Linux上也是能够运行的。 要开始学习Python编程,首先就得把Python安装到你的电脑里。安装后,你会得到Python解释器(就是负责运行Python程序的),一个命令行交互环境,还有一个简单的集成开发环境。 2.x还是3.x 目前,Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的,因为现在Python正在朝着3.x版本进化,在进化过程中,大量的针对2.x版本的代码要修改后才能运行,所以,目前有许多第三方库还暂时无法在3.x上使用。 为了保证你的程序能用到大量的第三方库,我们的教程仍以2.x版本为基础,确切地说,是2.7版本。请确保你的电脑上安装的Python版本是2.7.x,这样,你才能无痛学习这个教程。 在Mac上安装Python 如果你正在使用Mac,系统是OS X 10.8或者最新的10.9 Mavericks,恭喜你,系统自带了Python 2.7。如果你的系统版本低于10.8,请自行备份系统并免费升级到最新的10.9,就可以获得Python 2.7。 查看系统版本的办法是点击左上角的苹果图标,选择“关于本机”: osx-10.9 在Linux上安装Python 如果你正在使用Linux,那我可以假定你有Linux系统管理经验,自行安装Python 2.7应该没有问题,否则,请换回Windows系统。 对于大量的目前仍在使用Windows的同学,如果短期内没有打算换Mac,就可以继续阅读以下内容。 在Windows上安装Python 首先,从Python的官方网站python.org下载最新的2.7版本,网速慢的同学请移步国内镜像。 然后,运行下载的MSI安装包,在选择安装组件的一步时,勾上所有的组件: install-python-windows 特别要注意选上pip和Add python.exe to Path,然后一路点“Next”即可完成安装。 默认会安装到C:Python27目录下,然后打开命令提示符窗口,敲入python后,会出现两种情况: 情况一: python-command 看到上面的画面,就说明Python安装成功! 你看到提示符>>>就表示我们已经在Python交互式环境中了,可以输入任何Python代码,回车后会立刻得到执行结果。现在,输入exit()并回车,就可以退出Python交互式环境(直接关掉命令行窗口也可以!)。 情况二:得到一个错误: ‘python’不是内部或外部命令,也不是可运行的程序或批处理文件。这是因为Windows会根据一个Path的环境变量设定的路径去查找python.exe,如果没找到,就会报错。如果在安装时漏掉了勾选Add python.exe to Path,那就要手动把python.exe所在的路径C:Python27添加到Path中。 如果你不知道怎么修改环境变量,建议把Python安装程序重新运行一遍,记得勾上Add python.exe to Path。 小结 学会如何把Python安装到计算机中,并且熟练打开和退出Python交互式环境
xuning715 2019-12-02 01:10:15 0 浏览量 回答数 0

问题

MaxCompute产品简介:导读

如果您是 MaxCompute 初学者 如果您是初学者,建议您从如下模块开始读起:   简介: MaxCompute 产品的总体介绍以及包含的主要功能。通过阅读该章节,您会对 Ma...
行者武松 2019-12-01 22:01:09 1399 浏览量 回答数 0

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理
1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

问题

linux下php多线程的妙用(转):报错

开 始用php写后台服务一段时间了.也是在这样的驱动下,不断的学习php语法,体验这一原来一直以为神秘且敬而远之的神奇语言的魅力.最初看php多线程 的资料是为了提高程序的处理能力,充分发挥linux多任务的优势.不曾想多线程没用成反到是带...
kun坤 2020-06-14 09:08:45 0 浏览量 回答数 0

回答

数据通道 批量历史数据通道 Tunnel是MaxCompute为您提供的数据传输服务,提供高并发的离线数据上传下载服务。支持每天TB/PB级别的数据导入导出,特别适合于全量数据或历史数据的批量导入。Tunnel为您提供Java编程接口,并且在MaxCompute的客户端工具中,提供对应的命令实现本地文件与服务数据的互通。 实时增量数据通道 针对实时数据上传的场景,MaxCompute提供了延迟低、使用方便的DataHub服务,特别适用于增量数据的导入。DataHub还支持多种数据传输插件,例如Logstash、Flume、Fluentd、Sqoop等,同时支持日志服务Log Service中的投递日志到MaxCompute,进而使用DataWorks进行日志分析和挖掘。 计算及分析任务 MaxCompute支持多种计算模型,详情如下: SQL:MaxCompute以表的形式存储数据,支持多种数据类型,并对外提供SQL查询功能。您可以将MaxCompute作为传统的数据库软件操作,但其却能处理TB、PB级别的海量数据。 说明 MaxCompute SQL不支持事务、索引,也不支持Update或Delete操作。 MaxCompute的SQL语法与Oracle、MySQL有一定差别,您无法将其他数据库中的SQL语句无缝迁移至MaxCompute中。详情请参见与其他SQL语法的差异。 MaxCompute主要用于100GB以上规模的数据计算,因此MaxCompute SQL最快支持在分钟或秒钟级别完成查询返回结果,但无法在毫秒级别返回结果。 MaxCompute SQL的优点是学习成本低,您不需要了解复杂的分布式计算概念。如果您具备数据库操作经验,便可快速熟悉MaxCompute SQL的使用。 UDF:即用户自定义函数。 MaxCompute提供了很多内建函数来满足您的计算需求,同时您还可以通过创建自定义函数来满足不同的计算需求。 MapReduce:MaxCompute MapReduce是MaxCompute提供的Java MapReduce编程模型,它可以简化开发流程,更为高效。使用MaxCompute MapReduce,需要对分布式计算概念有基本了解,并有相对应的编程经验。MaxCompute MapReduce为您提供Java编程接口。 Graph:MaxCompute提供的Graph功能是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点 (Vertex)和边(Edge)组成,点和边包含权值(Value)。通过迭代对图进行编辑、演化,最终求解出结果,典型应用:PageRank、单源最短距离算法 、K-均值聚类算法等。 Spark on MaxCompute:Spark on MaxCompute是阿里云开发的大数据分析引擎,为您提供大数据处理能力。详情请参见Spark概述。 SDK SDK是MaxCompute提供给开发者的工具包,当前支持Java SDK及Python SDK。 安全 MaxCompute提供了功能强大的安全服务,为您的数据安全提供保护,详情请参见安全指南。
LiuWH 2020-03-18 18:45:12 0 浏览量 回答数 0

问题

【MaxCompute】的产品概述

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 为您提供了完善的数据导入方案以及多种经典的分布式计算模型&#...
玄学酱 2019-12-01 21:55:03 1428 浏览量 回答数 0

问题

【教程免费下载】 MySQL DBA修炼之道

前言        为什么要写本书        本书主要讲述MySQL DBA的必备技能,包括MySQL的安装部署、开发、测试、监控和运维,此外,读者还可从中学习到系统架构的一些知识。...
玄学酱 2019-12-01 22:08:05 2647 浏览量 回答数 1

回答

SCC(超级计算集群)简介 SCC概述 超级计算集群(Super Computing Cluster,SCC)使用高速RDMA网络互联的CPU以及GPU等异构加速设备,面向高性能计算、人工智能/机器学习、科学/工程计算、数据分析、音视频处理等应用,提供极致计算性能和并行效率的计算集群服务。 SCC实例类型 类型 CPU Memory 网络 存储 适用场景 ecs.scch5.16xlarge 64核 Skylake Xeon Gold 6149 3.1GHz 192GB 50 Gbps RDMA 高效云盘(容量可选) + SSD云盘(容量可选) CPU主频高,单核计算能力强,适用于多数计算密集型应用场景 ecs.sccg5.24xlarge 96核 Skylake Xeon Platinum 8163 2.5GHz 384GB 50 Gbps RDMA 高效云盘(容量可选) + SSD云盘(容量可选) CPU核数多,内存容量大,适用于内存需求较高、扩展性好的科学计算场景以及高并发的批处理场景 使用SCC实例创建E-HPC集群 创建过程 目前配备有SCC实例的可用区主要有:华东1可用区H、华东2可用区B、华北1可用区C、华北3可用区A。考虑到库存的变化,用户在创建集群之前可以通过ECS管理控制台查看SCC实例在不同可用区的分布情况。 从E-HPC管理控制台进入集群创建页面,在计算节点下划栏中勾选SCC实例。 勾选SCC注意:上图中SCC实例的CPU核数是按照vCPU数目来显示的,而实际交付的SCC实例为超线程关闭(HT off)状态,即scch5.16xlarge和sccg5.24xlarge的CPU核数分别为32物理核和48物理核。 后续创建过程请参考E-HPC集群创建与配置 硬件信息 相比于普通ECS实例,SCC实例的核心硬件升级之一在于配备了50Gbps的RoCE(RDMA over Converged Ethernet)网络,故网络信息与普通ECS实例相比有明显差异。 网络硬件信息 相比于普通ECS实例,SCC实例同时拥有10Gbps VPC网络和50Gbps RoCE网络的网口,因此在会ECS管理控制台上会同时显示两个IP地址。 SCC IP 正常的SCC实例会显示如下网口信息,其中bond0为RoCE网口,eth0为VPC网口。 SCC网口信息 网络连通性验证 同一个E-HPC集群下的SCC实例间的VPC网络IP和RoCE网络IP均可以相互ping通 同一个E-HPC集群下的SCC实例间可以通过VPC网络IP和RoCE网络IP进行ssh登陆 RoCE网络性能测试 测试RoCE网络的峰值带宽与延迟 带宽测试样例 ##读带宽测试 ib_read_bw -a -q 20 --report_gbits ##服务端compute0执行 ib_read_bw -a -q 20 --report_gbits compute0 ##用户端compute1执行 ##写带宽测试 ib_write_bw -a -q 20 --report_gbits ##服务端compute0执行 ib_write_bw -a -q 20 --report_gbits compute0 ##用户端compute1执行 延迟测试样例 ##读延迟测试 ib_read_lat -a ##服务端compute0执行 ib_read_lat -F -a compute0 ##用户端compute1执行 ##写延迟测试 ib_write_lat -a ##服务端compute0执行 ib_write_lat -F -a compute0 ##用户端compute1执行 监测RoCE网络的实际带宽利用情况 在SCC实例root用户下执行rdma_monitor -s实时获取RoCE网络信息 rdma_monitor 使用E-HPC性能监控与分析引擎集谛来监测各SCC实例RoCE网络带宽随时间的变化情况。 集谛监测RoCE 在SCC集群上编译和运行MPI程序 由于SCC实例同时支持50Gbps RoCE网络和10Gbps VPC网络,用户在执行跨节点MPI程序时可能会遇到节点间数据流量默认走VPC网口的情况,这里我们推荐用户在SCC集群上使用IntelMPI来编译和运行跨节点MPI程序。 编译跨节点MPI程序 安装IntelMPI E-HPC集成了IntelMPI 2018版本,用户只需在E-HPC控制台集群创建或软件管理功能界面中勾选IntelMPI 2018进行安装即可。 intelmpi 配置MPI环境变量 方法一:使用E-HPC集成的Module管理工具 $ module avail --------------------------------- /opt/ehpcmodulefiles -------------------------------- intel-mpi/2018 $ module load intel-mpi/2018 $ which mpicc /opt/intel/impi/2018.3.222/bin64/mpicc 方法二:执行IntelMPI自带的环境变量配置脚本 $ source /opt/intel/compilers_and_libraries/linux/bin/compilervars.sh intel64 $ which mpicc /opt/intel/impi/2018.3.222/bin64/mpicc 设置MPI编译参数 完成MPI环境变量配置后,需要在软件Makefile或预编译脚本中指定MPI编译器的相对/绝对路径,然后执行编译过程。 -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx 运行跨节点MPI程序 对于在E-HPC软件环境中采用IntelMPI编译的软件,提交任务时无需额外指定网口参数,便可以直接通过RoCE网络进行跨节点数据通信。 #!/bin/sh #PBS -j oe #PBS -l select=<节点数>:ncpus=<每节点核数>:mpiprocs=<每个节点进程数> module load intel-mpi/2018 mpirun <软件执行命令> 对于在用户本地环境编译的软件或预编译的商用软件,可以在提交MPI任务时指定RoCE网卡信息来避免可能出现的数据流量不走RoCE网络或网卡设备not found等问题。 #!/bin/sh #PBS -j oe #PBS -l select=<节点数>:ncpus=<每节点核数>:mpiprocs=<每个节点进程数> export I_MPI_FABRICS=shm:dapl module load intel-mpi/2018 mpirun -genv I_MPI_DAPL_PROVIDER ofa-v2-mlx5_bond_0 <软件执行命令> 用户可以使用集谛性能监测功能对SCC实例的CPU利用率、访存带宽、RoCE网络带宽等性能数据进行实时监测。 SCC性能
1934890530796658 2020-03-24 09:49:57 0 浏览量 回答数 0

问题

Apache Flink常见问题汇总【精品问答】

Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以...
黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

问题

基础语言百问-Python

基础语言百问-Python 软件界最近非常流行一句话“人生苦短,快用Python”,这就展示出了Python的特点,那就是快,当然这个快并不是指的Python运行快,毕竟是脚本语言,再怎样也快不过C语言和C++这样的底层语言,这里的快指的是...
薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

问题

MaxCompute百问集锦

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
yq传送门 2019-12-01 20:16:47 2404 浏览量 回答数 1

问题

应用 AXIS 开始 Web 服务之旅:报错

一. 介绍 本文并不是想介绍Web服务的原理、系统架构等,我们假设您已经了解了关于Web服务的一些基本的概念、原理等知识。本文主要是针对那些已经了解Web服 务概念,但是还没有亲身体会Web服务...
kun坤 2020-06-08 11:01:46 3 浏览量 回答数 1

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20210409)

产品简介 什么是MaxCompute呢? https://developer.aliyun.com/ask/289579 使用MaxCompute需要什么专业技能? https://developer.aliyun.co...
亢海鹏 2020-05-29 15:10:00 42262 浏览量 回答数 34

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失
问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

2013年,Docker.Inc 开源了一款应用容器引擎 Docker。开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到相同内核的任何 Linux 机器上部署运行。这种集装箱式的应用开发和部署方...
kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

问题

程序员报错QA大分享(1)

程序员报错QA征集第一弹来了哦~包含QA分享一期征集的部分内容,链接附带解决方案,可收藏哦~ npm install安装依赖一直报错?报错https://developer.aliyun.com/ask/301...
问问小秘 2020-06-18 15:46:14 1684 浏览量 回答数 2

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT