• 关于 阿里云 延迟队列 的搜索结果

问题

【精品问答】消息队列 AMQP 版

montos 2020-04-08 12:22:31 3 浏览量 回答数 1

问题

请问rabbitmq里面,有没有延迟队列

珍宝珠 2019-12-01 20:00:41 7 浏览量 回答数 1

回答

事件通知是一种监控手段,可以自动发送消息至云监控或消息服务,帮助您及时掌握伸缩组的动态,进一步实现自动化管理。 事件通知方式 事件通知支持发送消息到云监控系统事件、MNS主题或MNS队列。 云监控提供了各类云产品系统事件的统计和查询入口,包括弹性伸缩,您可以通过云监控及时了解伸缩组的状态。如需详细了解云监控的事件监控功能,请参见云产品系统事件监控。 MNS主题和MNS队列是阿里云消息服务(Message Service)的两种服务模型。消息服务是一种分布式消息服务,能够帮助您在分布式组件之间自由的传递数据、通知消息,构建松耦合系统。如需详细了解MNS主题和MNS队列的特性,请参见消息服务概述。 说明 消息服务涉及计费,详情请参见消息服务定价。 队列模型支持一对一发送和接收消息,旨在提供高可靠高并发的一对一消费能力,队列中的每一条消息都只能够被某一个消费者进行消费。 主题模型支持一对多发布和订阅消息,旨在提供一对多的发布订阅以及消息通知功能,您可以通过多种推送方式发布消息。 下面给出三种事件通知方式的示例,具体参数信息,请参见创建事件通知。 云监控事件通知示例 您创建了一个事件通知,通知方式为云监控,事件通知类型为成功的弹性扩张活动、弹性伸缩组扩容伸缩活动开始。在伸缩组成功执行弹性扩张活动后,云监控会收到事件通知并显示事件。下图为成功执行弹性扩张活动的效果,显示了弹性伸缩扩容伸缩活动开始和弹性伸缩扩容活动成功的事件。 事件通知概述-云监控事件通知示例 除在云监控控制台查看伸缩组的动态外,您还可以创建报警规则,通过短信、邮箱等方式批量通知其它联系人,提高运维效率。 MNS主题事件通知示例 您创建了一个事件通知,通知方式为MNS主题,事件通知类型为成功的弹性收缩活动、弹性伸缩组缩容伸缩活动开始。在伸缩组成功执行弹性收缩活动后,MNS主题会收到事件通知并分发给订阅者。下图为成功执行弹性收缩活动的效果,MNS主题的消息数增加,您可以前往订阅者查看消息详情。 MNS主题不支持直接消费消息,您可以通过MNS队列、http、邮箱等方式订阅MNS主题,在MNS主题收到消息后,会自动推送到这些订阅者,达到统一分发、各自消费的效果,实现高效的自动化管理。 事件通知概述-MNS主题事件通知示例 MNS队列事件通知示例 您创建了一个事件通知,通知方式为MNS队列,事件通知类型为失败的弹性扩张活动、弹性伸缩组扩容伸缩活动开始。在伸缩组执行弹性扩张活动失败后,MNS队列会收到事件通知并根据配置维护消息以供您消费。下图为执行弹性扩张活动失败的效果,MNS队列内的活跃消息数增加。 您可以自由消费、延迟、激活或者删除消息,灵活地通过事件通知实现自动化管理。 事件通知概述-MNS队列事件通知示例

1934890530796658 2020-03-22 00:59:28 0 浏览量 回答数 0

消息队列 RocketMQ 9.9元包月起

消息队列 RocketMQ 9.9元包月起,另含2000万次API 免费调用额度

回答

消息队列(Message Queue,简称 MQ)是构建分布式互联网应用的基础设施,通过 MQ 实现的松耦合架构设计可以提高系统可用性以及可扩展性,是适用于现代应用的最佳设计方案。MQ 产品生态丰富,多个子产品线联合打造金融级高可用消息服务以及对物联网的原生支持,覆盖金融保险、(新)零售、物联网、移动互联网、传媒泛娱乐、教育、物流、能源、交通等行业。 阿里云消息队列新用户只需9.9/月https://www.aliyun.com/product/ons?utm_content=se_1005011197 消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。该产品最初由阿里巴巴自研并捐赠给 Apache 基金会,服务于阿里集团 13 年,覆盖全集团所有业务。作为双十一交易核心链路的官方指定产品,支撑千万级并发、万亿级数据洪峰,历年刷新全球最大的交易消息流转记录。 产品优势 稳定性 阿里巴巴双十一官方指定消息产品,支撑阿里巴巴集团所有的消息服务,历经十余年高可用与高可靠的严苛考验,是阿里巴巴交易链路的核心产品; 服务可用性 99.95%,Region 化、多可用区、分布式集群化部署,确保服务高可用,即便整个机房不可用仍可正常提供消息服务; 数据可靠性 99.99999999%,同步双写、超三副本数据冗余与快速切换技术确保数据可靠; 高性能 历年双 11 购物狂欢节零点千万级 TPS、万亿级数据洪峰,创造了全球最大的业务消息并发以及流转纪录(日志类消息除外); 在始终保证高性能前提下,支持亿级消息堆积,不影响集群的正常服务,在削峰填谷(蓄洪)、微服务解耦的场景下尤为重要; 丰富的消息类型 提供丰富的消息类型,满足各种严苛场景下的高级特性需求,当前支持的消息类型涵盖普通消息、顺序消息(全局顺序 / 分区顺序)、分布式事务消息、定时消息/延时消息; 安全访问控制 以消息主题、订阅组的粒度,对每一条消息的收、发请求都进行严格的访问控制,确保消息的安全性; 全面支持阿里云 RAM 主子账号、黑白名单、STS 等功能,支持 TLS 传输加密协议、阿里云 VPC 访问等;

NaCl鱼 2020-04-17 10:02:34 0 浏览量 回答数 0

回答

消息队列(Message Queue,简称 MQ)是构建分布式互联网应用的基础设施,通过 MQ 实现的松耦合架构设计可以提高系统可用性以及可扩展性,是适用于现代应用的最佳设计方案。MQ 产品生态丰富,多个子产品线联合打造金融级高可用消息服务以及对物联网的原生支持,覆盖金融保险、(新)零售、物联网、移动互联网、传媒泛娱乐、教育、物流、能源、交通等行业。 阿里云消息队列新用户只需9.9/月https://www.aliyun.com/product/ons?utm_content=se_1005011197 消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。该产品最初由阿里巴巴自研并捐赠给 Apache 基金会,服务于阿里集团 13 年,覆盖全集团所有业务。作为双十一交易核心链路的官方指定产品,支撑千万级并发、万亿级数据洪峰,历年刷新全球最大的交易消息流转记录。 产品优势 稳定性 阿里巴巴双十一官方指定消息产品,支撑阿里巴巴集团所有的消息服务,历经十余年高可用与高可靠的严苛考验,是阿里巴巴交易链路的核心产品; 服务可用性 99.95%,Region 化、多可用区、分布式集群化部署,确保服务高可用,即便整个机房不可用仍可正常提供消息服务; 数据可靠性 99.99999999%,同步双写、超三副本数据冗余与快速切换技术确保数据可靠; 高性能 历年双 11 购物狂欢节零点千万级 TPS、万亿级数据洪峰,创造了全球最大的业务消息并发以及流转纪录(日志类消息除外); 在始终保证高性能前提下,支持亿级消息堆积,不影响集群的正常服务,在削峰填谷(蓄洪)、微服务解耦的场景下尤为重要; 丰富的消息类型 提供丰富的消息类型,满足各种严苛场景下的高级特性需求,当前支持的消息类型涵盖普通消息、顺序消息(全局顺序 / 分区顺序)、分布式事务消息、定时消息/延时消息; 安全访问控制 以消息主题、订阅组的粒度,对每一条消息的收、发请求都进行严格的访问控制,确保消息的安全性; 全面支持阿里云 RAM 主子账号、黑白名单、STS 等功能,支持 TLS 传输加密协议、阿里云 VPC 访问等;

NaCl鱼 2020-04-17 09:21:25 0 浏览量 回答数 0

回答

MNS配置消息队列 首先用户需要在消息服务配置队列以接收工作流发出的消息。具体操作流程如下:消息服务->队列->选择数据中心->创建队列,界面如下图。 1 新建队列必填的参数包括队列名称和当前地域,其他参数均为可选值,这些参数的意义如下: 消息接收长轮询等待时间:表示轮询等待的时间,也就是针对该队列的所有ReceiveMessage请求在Queue无消息时,都将默认进入到Polling等待状态,在等待期间一直保持无消息,则会返回MessageNotExist;如果在此期间有新的消息进入到Queue中,则会唤醒相应的ReceiveMessage请求进行返回。这里默认值为0秒,即关闭长轮询。 取出消息隐藏时长:表示消息从队列中取出后保持隐藏状态的时间。消息从队列中取出后会被从可取状态(Active)变成隐藏状态(Inactive)后,这个时间一到,消息会从隐藏恢复成Active可取状态。这里默认值为30秒。 消息最大长度:限定允许发送到该队列的消息体的最大长度,默认值为64KB,建议这里不要设置太小,因为工作流发送消息体内容较多,如果设置较小可能会导致无法接收到消息。 消息存活时间: 表示消息在本队列中最长的存活时间,从发送到该队列开始经过此参数指定的时间后,不论消息是否被取出过都将被删除,目前默认值为4天。 消息延时:表示消息可供消费的延迟时间,发送消息到本队列的所有消息默认将以本参数指定的秒数延后可被消费,默认值为0秒。 开启logging:表示将该队列中的日志推送到OSS或者SLS中。这里需要在日志管理中配置,配置方法请参考【推送日志到OSS】和【推送日志到LogService】,默认为不开启状态。 2.2 工作流配置消息模式 用户接下来需要将工作流与消息服务中的该队列相关联,在编辑工作流的输入节点时即可设置消息队列,如下图。用户设置消息类别为队列,队列名称选择之前我们设置的名称即关联完成。 2 2.3 MNS队列接收示例代码 上述流程配置完成后即执行工作流并通过MNS队列获取其中的消息。获取MNS队列中的消息可以通过MNS的API/SDK方式获取。这里以Java SDK的使用作为示例进行演示。 首先需要获取MNS相关信息,主要包括:AccessKeyId、AccessKeySecret、MNSEndpoint和队列名称。AccessKeyId和AccessKeySecret获取方法请登陆阿里云管理控制台,在下图中的按钮中获取。 3 MNS队列的名称即是我们前述创建的队列的名称,可以在MNS控制台中的队列列表中查看。而MNSEndpoint表示连接该队列的地址,可以通过MNS控制台中的“获取Endpoint”按钮获取得到,如下图中可以查看到每个账号在每个数据中心对应三个MNSEndpoint,分别是公网地址、私网地址和VPC地址。公网地址即是在有公网IP的服务器上均可使用,私网地址是指同一数据中心的阿里云经典网络的云服务器ECS上连接MNS可以使用的地址,而VPC地址即是同一数据中心的阿里云VPC网络的云服务器ECS的内网连接地址。 4 接下来即是构建Java测试环境,这里我们采用maven方式构建project。下面即是我们添加的依赖项和示例代码。 <dependency> <groupId>com.aliyun.mns</groupId> <artifactId>aliyun-sdk-mns</artifactId> <version>1.1.5</version> </dependency> public class ConsumerDemo { public static void main(String[] args) { CloudAccount account = new CloudAccount("YourAccessId", "YourAccessKey", "MNSEndpoint"); MNSClient client = account.getMNSClient(); // 在程序中,CloudAccount以及MNSClient单例实现即可,多线程安全 try{ CloudQueue queue = client.getQueueRef("TestQueue"); Message popMsg = queue.popMessage(); if (popMsg != null){ System.out.println("message handle: " + popMsg.getReceiptHandle()); System.out.println("message body: " + popMsg.getMessageBodyAsString()); System.out.println("message id: " + popMsg.getMessageId()); System.out.println("message dequeue count:" + popMsg.getDequeueCount()); //删除已经取出消费的消息 queue.deleteMessage(popMsg.getReceiptHandle()); System.out.println("delete message successfully.\n"); } else{ System.out.println("message not exist in TestQueue.\n"); } } catch (ClientException ce) { System.out.println("Something wrong with the network connection between client and MNS service." + "Please check your network and DNS availablity."); ce.printStackTrace(); } catch (ServiceException se) { se.printStackTrace(); logger.error("MNS exception requestId:" + se.getRequestId(), se); if (se.getErrorCode() != null) { if (se.getErrorCode().equals("QueueNotExist")) { System.out.println("Queue is not exist.Please create before use"); } else if (se.getErrorCode().equals("TimeExpired")) { System.out.println("The request is time expired. Please check your local machine timeclock"); } /* you can get more MNS service error code from following link: https://help.aliyun.com/document_detail/mns/api_reference/error_code/error_code.html */ } } catch (Exception e) { System.out.println("Unknown exception happened!"); e.printStackTrace(); } client.close(); } } 3. 注意事项 工作流需要配置同一数据中心的消息队列,不支持配置跨地域的消息队列。 在队列中消费消息后需要调用deleteMessage方法删除该消息,否则会导致应用端重复消费消息。

保持可爱mmm 2020-03-30 11:56:56 0 浏览量 回答数 0

问题

【阿里云产品公测】MQS使用体会和建议

dongcc 2019-12-01 21:13:38 14959 浏览量 回答数 4

问题

什么是消息服务(MNS)日志hi?

轩墨 2019-12-01 21:58:51 1517 浏览量 回答数 0

问题

消息服务是什么?

轩墨 2019-12-01 22:06:25 1480 浏览量 回答数 0

问题

【精品问答】消息队列 Kafka 版

montos 2020-04-08 13:18:45 2 浏览量 回答数 1

问题

【精品问答】消息队列 RocketMQ 版

montos 2020-04-08 12:31:53 4 浏览量 回答数 1

回答

1. 使用MQTT协议连接,不同的设备可以使用相同的clientID连接服务器吗? clientID需为全局唯一。如果不同的设备使用相同的clientID同时连接物联网平台,那么先连接的那个设备会被强制断开。 2. 物联网平台支持哪些QoS Level? 目前,在MQTT协议和CCP协议下,阿里云物联网平台支持的QoS Level都包括0和1。 3. 物联网平台如何监听设备消息? 服务端可以直接订阅产品下配置的所有类型的消息。具体请参考服务端订阅。 4. MQTT协议Pub消息payload是什么格式? 基础版产品设备消息数据为透传/自定义格式。高级版产品设备消息数据为Alink JSON格式。 5. 服务端接收MQTT上传的16进制数据怎么进行解析? 是否是16进制数据对解析过程没有影响。 设备数据发送到消息队列:设备通过MQTT publish发送数据payload(byte[])到服务器,物联网平台把payload做base64编码,再传输给消息队列。用户收到的数据为base64解码后的数据,与MQTT pulish发送时一样的byte[]内容。 6. HTTP协议和CoAP协议支持数据下行吗? 目前,HTTP协议和CoAP协议暂不支持数据下行。MQTT协议支持数据上、下行,推荐使用。 7. 接入设备多了,会不会影响消息通讯,比如出现延迟? 物联网平台有流控限制。具体限制,请参见使用限制文档。

剑曼红尘 2020-03-05 13:07:26 0 浏览量 回答数 0

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

问题

Java SDK 如何进行延时消息收发的?

猫饭先生 2019-12-01 21:08:33 931 浏览量 回答数 0

问题

【阿里云产品评测】个人WP站的云体验

cnsjw 2019-12-01 20:54:27 22207 浏览量 回答数 25

问题

【阿里云产品公测】消息队列服务MQS java SDK 机器人应用 初体验

啊里新人 2019-12-01 21:08:47 25480 浏览量 回答数 18

问题

.NET SDK 发送定时消息如何实现?

猫饭先生 2019-12-01 21:14:58 1099 浏览量 回答数 0

问题

消息队列 MQ名词解释在哪里?

猫饭先生 2019-12-01 21:07:31 1327 浏览量 回答数 0

问题

阿里云-小程序云

问问小秘 2020-04-07 18:45:54 24 浏览量 回答数 1

回答

阿里云容器服务Kubernetes集群支持通过界面创建Job类型的应用。本例中将创建一个Job类型的busybox应用,并演示任务(Job)应用的特性。 前提条件 您已成功创建一个 Kubernetes 集群。参见创建Kubernetes集群。 背景信息 Job负责批量处理短暂的一次性任务 (short lived one-off tasks),即仅执行一次的任务,它保证批处理任务的一个或多个Pod成功结束。 Kubernetes支持以下几种Job: 非并行Job:通常创建一个Pod直至其成功结束 固定结束次数的Job:设置.spec.completions,创建多个Pod,直到.spec.completions个Pod成功结束 带有工作队列的并行Job:设置.spec.Parallelism但不设置.spec.completions,当所有Pod结束并且至少一个成功时,Job就认为是成功。 固定结束次数的并行Job:同时设置.spec.completions和.spec.Parallelism,多个Pod同时处理工作队列。 根据.spec.completions和.spec.Parallelism的设置,可以将Job划分为以下几种模式: 说明 本例中创建的任务属于固定结束次数的并行Job。 Job类型 使用示例 行为 completions Parallelism 一次性Job 数据库迁移 创建一个Pod直至其成功结束 1 1 固定结束次数的Job 处理工作队列的Pod 依次创建一个Pod运行直至completions个成功结束 2+ 1 固定结束次数的并行Job 多个Pod同时处理工作队列 依次创建多个Pod运行直至completions个成功结束 2+ 2+ 并行Job 多个Pod同时处理工作队列 创建一个或多个Pod直至有一个成功结束 1 2+ 操作步骤 登录容器服务管理控制台。 在Kubernetes菜单下,单击左侧导航栏中的应用 > 任务,然后单击页面右上角的使用镜像创建。 在应用基本信息页面进行设置,然后单击下一步 进入应用配置页面。 应用名称:设置应用的名称。 部署集群:设置应用部署的集群。 命名空间:设置应用部署所处的命名空间,默认使用default命名空间。 类型:设置类型为任务。 说明 本例中选择任务类型,即Job。 应用配置 设置容器配置。 说明 您可为应用的Pod设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 busybox。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 设置镜像密钥:若您在使用私有镜像时,您可使用镜像密钥,保障镜像安全。具体配置请参见使用镜像密钥。 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 millicores,即一个核的千分之一;内存的单位为 Bytes,可以为 Gi、Mi 或 Ki。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程抢占资源,导致应用不可用。 Init Container:勾选该项,表示创建一个Init Container,Init Container包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 容器基本配置 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 配置健康检查。 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 配置健康检查 请求类型 配置说明 HTTP请求 即向容器发送一个HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS 路径:访问HTTP server 的路径 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 HTTP头:即HTTPHeaders,HTTP请求中自定义的请求头,HTTP允许重复的header。支持键值对的配置方式。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为3秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 TCP连接 即向容器发送一个TCP Socket,kubelet将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为15秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为5秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 可选: 配置生命周期。 您可以为容器的生命周期配置容器启动项、启动执行、启动后处理和停止前处理。具体参见https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 容器启动项:勾选 stdin 表示为该容器开启标准输入;勾选 tty 表示为该容器分配一个虚拟终端,以便于向容器发送信号。通常这两个选项是一起使用的,表示将终端(tty)绑定到容器的标准输入(stdin)上,例如一个交互式的程序从用户获取标准输入,并显示到终端中。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 可选: 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云盘/NAS/OSS三种云存储类型。 可选: 配置日志服务,您可进行采集配置和自定义Tag设置。 说明 请确保已部署Kubernetes集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的logstore,用于存储采集到的日志。 容器内日志路径:支持stdout和文本日志。 stdout: stdout 表示采集容器的标准输出日志。 文本日志:您可收集容器内指定路径的文本日志,同时支持通配符的方式。 您还可设置自定义 tag,设置tag后,会将该tag一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上tag,方便进行日志统计和过滤等分析操作。 完成容器配置后,单击 下一步。 进行高级设置。 您可进行任务配置。 参数 说明 成功运行的Pod数 即completions,指定job需要成功运行Pods的数量。默认值为1 并行运行的Pod数 即parallelism,指定job在任一时刻应该并发运行Pod的数量。默认值为1 超时时间 即activeDeadlineSeconds,指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。 重试次数 即backoffLimit,指定job失败后进行重试的次数。默认是6次,每次失败后重试会有延迟时间,该时间是指数级增长,最长时间是6min。 重启策略 仅支持不重启(Never)和失败时(OnFailure) 高级设置 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象。 创建完成 您可以单击查看应用详情,进入任务详情页面。 创建过程中,您可在状态栏中查看容器组的创建情况。本例中按照任务定义,一次性并行创建2个Pod。 查看应用详情 等待一段时间,所有容器组创建完毕。 查看应用结果 单击左上角返回列表,进入任务列表页面中,您可看到,该任务已显示完成时间。 说明 若任务未创建完毕所有容器组,任务不会显示完成时间。 任务详情

1934890530796658 2020-03-31 15:46:54 0 浏览量 回答数 0

回答

任何虚拟化都有一定的性能损失,和物理主机媲美纯属扯淡。系统都可以虚拟,针对数据测试做个优化还不简单。hd tune的测试与硬件有关系,如果系统做了虚拟化转换,测试的结果并不准确,这点在盛大的论坛已经有多个截图论证。那些数字很高的数据,几乎清一色来自hd tune,为什么不测试linux下的系统命令,以及win下的实际拷贝速度呢?有很多不需要删除硬盘就能测试速度的软件为什么不用? 还有,硬盘写入速度假设为10Mb/s,这个数据很低了吧,要匹配这个瓶颈,需要极其苛刻的条件:80M的带宽,满负载运作,并且全部请求都是写入请求,请问到了这个级别,还有人用虚拟系统? 硬盘只是众多指标中的一个,CPU、内存、硬盘、带宽需要均衡配置,一个386机器配一个gtx680d显卡又如何? ------------------------- 回 2楼(cmsns) 的帖子 这个只是假设,大部分的请求是不需要写入的,对硬盘读的要求更高,大部分云主机、VPS都是读的速度大大高于写速度,所以我单独列出了写速度,将之作为瓶颈。 你说的打开很多个数据表,这些只是对读速度有很高的要求,而写入的速度,比如你注册一个账号,比如提交一个评论,上传一个头像,这些本来相对于打开网页的概率就小很多,一般而言,一个网站的访问,有10%的写入请求,就算是很高了,而且写入请求也很少涉及多个表同时写入的情况。还有,你一个写入或者读取的请求打开几个表,已经是很多了,如果打开几十个,你的软件架构是不是有问题? 另外我们计算的都是极端情况,没有考虑内存缓存,没有考虑队列。比如你同时有30000个写入请求,超出写入带宽,那么可能有15000个写入请求会停顿延迟一秒,这并不是什么不可接受的情况,而且这种情形现实应用中不会发生。 还有自动备份,一般而言,备份如果是在一个硬盘上,你设置的频率不会很高,因为这种备份没有意义,如果这个盘挂了,你的原数据和备份都会挂掉。自动备份在两个以上数据盘才有意义,那么两个数据盘,读写带宽就都是独立的,不存在你说的备份会影响带宽。 注意,我讨论的假设前提是现在大部分云主机、vps读速度大大高于写入速度的现状,而且对写入带宽取了较低的值,对应用场景也都采取了极端负面假设,甚至使用了很多在大型网站上才会发生的情况做假设,这些极端同时发生的情况是不会存在的。 ------------------------- 在我的论坛里也有一些关于linkcloud的讨论,有人说好,说人说不好,而且都很极端。要说服务,我想阿里的服务应该是我目前用过最好的,晚上十点多提交工单,十几分钟回复,主要的是解决了问题。我这样还算是linux老手,用了多年的,也会犯些低级错误。在盛大我感觉也挺不错,就是官方马甲多,让人厌烦,好在最近消停了不少,盛大的品质也在上升中,当然,原来盛大的品质就还不错。以前我比较讨厌西部数码,尤其是转域名的事,后来发现国内转域名都那样,错怪别人了。现在论坛 放在西部数码上,感觉很不错。最近考虑把服务器转移到阿里云,就是百度收录不稳定,而且备案麻烦,耽误了。

tftaxis 2019-12-02 03:14:06 0 浏览量 回答数 0

问题

OpenSearch基础架构是怎样的?

轩墨 2019-12-01 20:55:16 976 浏览量 回答数 0

回答

批量计算目前绝大部分传统数据计算和数据分析服务均是基于批量数据处理模型: 使用ETL系统或者OLTP系统进行构造数据存储,在线的数据服务(包括Ad-Hoc查询、DashBoard等服务)通过构造SQL语言访问上述数据存储并取得分析结果。这套数据处理的方法论伴随着关系型数据库在工业界的演进而被广泛采用。但在大数据时代下,伴随着越来越多的人类活动被信息化、进而数据化,越来越多的数据处理要求实时化、流式化,当前这类处理模型开始面临实时化的巨大挑战。传统的批量数据处理模型传统的批量数据处理通常基于如下处理模型: 使用ETL系统或者OLTP系统构造原始的数据存储,以提供给后续的数据服务进行数据分析和数据计算。即下图,用户装载数据,系统将根据自己的存储和计算情况,对于装载的数据进行索引构建等一系列查询优化工作。因此,对于批量计算,数据一定需要预先加载到计算系统,后续计算系统才在数据加载完成后方能进行计算。 系统主动发起一个计算作业(例如MaxCompute的SQL作业,或者Hive的SQL作业)并向上述数据系统进行请求。此时计算系统开始调度(启动)计算节点进行大量数据计算,该过程的计算量可能巨大,耗时长达数分钟乃至于数小时。同时,由于数据累计的不可及时性,上述计算过程的数据一定是历史数据,无法保证数据的”新鲜”。您可以根据自己需要随时调整计算SQL,甚至于使用AdHoc查询,可以做到即时修改即时查询。 计算结果返回,计算作业完成后将数据以结果集形式返回给您,或者可能由于计算结果数据量巨大保存着数据计算系统中,您进行再次数据集成到其他系统。一旦数据结果巨大,整体的数据集成过程漫长,耗时可能长达数分钟乃至于数小时。 批量示意图 批量计算是一种批量、高时延、主动发起的计算。 您使用的批量计算的顺序是: 预先加载数据。 提交计算作业,并且可以根据业务需要修改计算作业,再次提交作业。 计算结果返回。 实时计算不同于批量计算模型,实时计算更加强调计算数据流和低时延,实时计算数据处理模型如下: 使用实时数据集成工具,将数据实时变化传输到流式数据存储(即消息队列,如DataHub);此时数据的传输变成实时化,将长时间累积大量的数据平摊到每个时间点不停地小批量实时传输,因此数据集成的时延得以保证。 此时数据将源源不断写入流数据存储,不需要预先加载的过程。同时流计算对于流式数据不提供存储服务,数据是持续流动,在计算完成后就立刻丢弃。 数据计算环节在流式和批量处理模型差距更大,由于数据集成从累积变为实时,不同于批量计算等待数据集成全部就绪后才启动计算作业,流式计算作业是一种常驻计算服务,一旦启动将一直处于等待事件触发的状态,一旦有小批量数据进入流式数据存储,流计算立刻计算并迅速得到结果。同时,阿里云流计算还使用了增量计算模型,将大批量数据分批进行增量计算,进一步减少单次运算规模并有效降低整体运算时延。 从用户角度,对于流式作业,必须预先定义计算逻辑,并提交到流式计算系统中。在整个运行期间,流计算作业逻辑不可更改!用户通过停止当前作业运行后再次提交作业,此时之前已经计算完成的数据是无法重新再次计算。 不同于批量计算结果数据需等待数据计算结果完成后,批量将数据传输到在线系统;流式计算作业在每次小批量数据计算后可以立刻将数据写入在线/批量系统,无需等待整体数据的计算结果,可以立刻将数据结果投递到在线系统,进一步做到实时计算结果的实时化展现。 实时示意图 实时计算是一种持续、低时延、事件触发的计算作业。您使用实时计算的顺序是: 提交实时计算作业。 等待流式数据触发实时计算作业。 计算结果持续不断对外写出。 模型对比下表给出了实时计算与批量计算两类计算模型的差别: 对比指标 批量计算 实时计算数据集成方式 预先加载数据 实时加载数据实时计算使用方式 业务逻辑可以修改,数据可重新计算 业务逻辑一旦修改,之前的数据不可重新计算(流数据易逝性)。数据范围 对数据集中的所有或大部分数据进行查询或处理。 对滚动时间窗口内的数据或仅对最近的数据记录进行查询或处理。数据大小 大批量数据。 单条记录或包含几条记录的微批量数据。性能 几分钟至几小时的延迟。 只需大约几秒或几毫秒的延迟。分析 复杂分析。 简单的响应函数、聚合和滚动指标。在大部分大数据处理场景下,受限于当前实时计算的整个计算模型较为简单,实时计算是批量计算的有效增强,特别在于对于事件流处理时效性上,实时计算对于大数据计算是一个不可或缺的增值服务。

李博 bluemind 2019-12-02 01:42:38 0 浏览量 回答数 0

回答

Redis里的数据不立刻更新,等redis里数据自然过期。然后去DB里取,顺带重新set redis。这种用法被称作“Cache Aside”。好处是代码比较简单,坏处是会有一段时间DB和Redis里的数据不一致。这个不一致的时间取决于redis里数据设定的有效期,比如10min。但如果Redis里数据没设置有效期,这招就不灵了。2. 更新DB时总是不直接触碰DB,而是通过代码。而代码做的显式更新DB,然后马上del掉redis里的数据。在下次取数据时,模式就恢复到了上一条说的方式。这也算是一种Cache Aside的变体。这要做的好处是,数据的一致性会比较好,一般正常情况下,数据不一致的时间会在1s以下,对于绝大部分的场景是足够了。但是有极少几率,由于更新时序,下Redis数据会和DB不一致(这个有文章解释,这里不展开)。Cache Aside,就是“Cache”在DB访问的主流程上帮个忙1和2的做法常规上被称为“Cache“。而且因为1有更新不及时的问题,2有极端情况下数据会不一致的问题,所以常规Cache代码会把1+2组合起来,要求Redis里的数据必须有过期时间,并且不能太长,这样即便是不一致也能混过去。同时如果是主动对数据进行更新,Cache的数据更新也会比较及时。并且2并不一定总是行得通。比如OLTP的服务在前面是Cache+DB的模式,而数据是由后台管理系统来更新的,总是不会触碰OLTP服务,更不会动Cache。这时将Redis看作是存储也算是一种方案。就是:3. Redis里的数据总是不过期,但是有个背景更新任务(“定时执行的代码” 或者 “被队列驱动的代码)读取db,把最新的数据塞给Redis。这种做法将Redis看作是“存储”。访问者不知道背后的实际数据源,只知道Redis是唯一可以取的数据的地方。当实际数据源更新时,背景更新任务来将数据更新到Redis。这时还是会存在Redis和实际数据源不一致的问题。如果是定时任务,最长的不一致时长就是更新任务的执行间隔;如果是用类似于队列的方式来更新,那么不一致时间取决于队列产生和消费的延迟。常用的队列(或等价物)有Redis(怎么还是Redis),Kafka,AMQ,RMQ,binglog,log文件,阿里的canal等。Cache当作“存储”来用,访问者只看得到Cache这种做法还有一种变体Write Through,写入时直接写DB,DB把数据更新Cache,而读取时读Cache。Write Through + Cache当存储以上方式无论如何都会有一段时间Redis和DB会不一致。实践上,这个不一致时间短则几十ms,长可以到几十分钟。这种程度的一致性对于很多业务场景都已经足够了。很多时候,用户无法区分自己读取的是Redis还是DB,只能读取到其中的一个。这时数据看起来直觉上是没问题的就可以接受了。只要不出现,用户先看见了数据是A,然后看到数据是B,之后一刷新,又看到A的尴尬场景就行了。(这也可以部份解释为啥用经常使用共享式的Cache而不是本地Cache方案)。但对于有些业务,比如协作文档编辑,电商秒杀的扣库存,银行转账等,以上的做法就不够用了。解决办法也有两大类。第一种是不要用Redis,只用DB。或者更直接点说是“只要一个单点的数据源”。这样肯定就没有一致性问题,代价就是CAP中因为CP被满足,因此A被牺牲掉。这就是为啥银行一系统升级就要停服务的原因。当然实际上也有CAP兼顾,但是C要的强一点,A就得弱一点,但不至于完全牺牲掉的做法。这里不展开。另外一种保证一致性的做法就是用某种分布式协议一致性来做,大致可以归结到SAGA或者TCC - 这两种需要业务代码的大量配合。通过业务代码来补偿一致性。2PC, 3PC - 现实当中有XA协议。比如Ehcache是支持XA协议的。但是性能表现不佳,运维也麻烦,我比较少见到实际这么干的。基于Paxos或者Raft的分布式锁,然后对Redis和DB进行双写,但是除非客户端和服务器么次都去访问分布式锁,也会有一点点不一致的问题。这实际上相当于将多个地方的一致性控制交给了分布式锁的集中维护。这些做法实施复杂度和运维复杂度太高,以至于对于像Redis + DB这种场景基本上没人这么干。本质上大家用Redis一般也就是想做个Cache而已。这些方案通常被用到比如多数据中心数据一致性维护的系统中。综上,除了单点DB存储之外的方案,其一致性面临的窘境是要么,接受“最终一致”,但到底多久之后一致,不一致时表现怎么样,有很多种做法。分布式一致性有各种各样的模型,比如线性一致性、顺序一致性等。他们都是在“不一致”和“强一致”之间提供某种折衷。这些折衷大量应用于我们常见的诸多业务之中、如社交、IM、电商不触及钱的地方等要么,要求必须强一致。那么在分布式条件下就要牺牲A。比如访问一个Cache,Cache知道自己的数据不是最新的,就要和DB去Sync,Sync的过程中DB的数据还不能改。期间访问者要不收到一个错误“数据不同步,不能访问”,要不就卡在那里等着同步完成。个人以为,这还不如干脆就不要Cache,在维护强一致的同时,用其他方式来优化访问性能。最最后提醒下,本文有很多不严谨的地方,包括对Cache的形式总结其实只有典型的几种,实际可能的要多得多;再比如对一致性的介绍也非常粗浅,原因是为了让初学者有一点点概念,能看得进去(就这样,已经很长了,评论区里也有人表示接受不了)。对于分布式和其一致性的完整知识的学习需要耗费大量的精力,Good Luck & Best Wishes。 来源:云原生后端社区

保持可爱mmm 2020-04-22 10:23:06 0 浏览量 回答数 0

问题

C/C++ SDK发送定时消息

猫饭先生 2019-12-01 21:08:57 966 浏览量 回答数 0

问题

达达O2O后台架构演进实践:从0到4000高并发请求背后的努力:报错

kun坤 2020-06-09 15:20:48 4 浏览量 回答数 1

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播