• 关于

    like 语句存储过程

    的搜索结果

问题

在MySQL的LIMIT子句中使用变量

保持可爱mmm 2020-05-11 16:00:26 0 浏览量 回答数 1

回答

mysql要实现定时执行sql语句就要用到Event 具体操作如下: 先看看看event 事件是否开启 show variables like '%sche%'; 如没开启,则开启。需要数据库超级权限 set global event_scheduler =1; 创建存储过程 update_a (注:就是你要执行的sql语 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:33 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 使用规则引擎时,若您的数据为JSON格式,可以编写SQL来解析和处理数据。规则引擎对二进制格式的数据不做解析,直接透传。本文主要讲解SQL表达式。 SQL表达式 JSON数据可以映射为虚拟的表,其中Key对应表的列,Value对应列值,这样就可以使用SQL处理。为便于理解,我们将规则引擎的一条规则抽象为一条SQL表达(类试MySQL语法): 例如某环境传感器用于火灾预警,可以采集温度、湿度及气压数据,上报数据内容如下: { "temperature":25.1 "humidity":65 "pressure":101.5 "location":"xxx,xxx" } 假定温度大于38,湿度小于40时,需要触发报警,可以编写如下的SQL语句:SELECT temperature as t, deviceName() as deviceName, location FROM /ProductA/+/update WHERE temperature > 38 and humidity < 40 当上报的数据中,温度大于38且湿度小于40时,会触发该规则,并且解析数据中的温度、设备名称、位置,用于进一步处理。 FROM FROM 需要填写Topic通配符,用于匹配需要处理的消息Topic。当有符合Topic规则的消息到达时,消息的payload数据以json格式解析,并根据SQL语句进行处理(如果消息格式不合法,将忽略此消息)。您可以使用topic()函数引用具体的Topic值。 上文例子中,"FROM /ProductA/+/update"语句表示该SQL仅处理符合/ProductA/+/update格式的消息,具体匹配参考 Topic。 SELECT JSON数据格式 select语句中的字段,可以使用上报消息的payload解析结果,即json中的键值,也可以使用SQL内置的函数,比如deviceName()。不支持子SQL查询。 上报的json数据格式,可以是数组或者嵌套的json,SQL语句支持使用json path获取其中的属性值,如对于{a:{key1:v1, key2:v2}},可以通过a.key2 获取到值v2。使用变量时需要注意单双引号区别:单引号表示常量,双引号或不加引号表示变量。如使用单引号'a.key2',值为a.key2。 内置的SQL函数可以参考函数列表。 例如上文,"SELECT temperature as t, deviceName() as deviceName, location"语句,其中temperature和loaction来自于上报数据中的字段,deviceName()则使用了内置的SQL函数。 二进制数据格式 目前二进制数据不支持解析payload中的字段,SELECT语句固定为SELECT *,表示透传二进制数据。 WHERE JSON数据格式 规则触发条件,条件表达式。不支持子SQL查询。WHERE中可以使用的字段和SELECT语句一致,当接收到对应topic的消息时,WHERE语句的结果会作为规则是否触发的判断条件。具体条件表达式列表见下方表格。上文例子中, "WHERE temperature > 38 and humidity < 40" 表示温度大于38且湿度小于40时,才会触发该规则,执行配置。 二进制数据格式 目前二进制格式WHERE语句中仅支持内置函数及条件表达式,无法使用payload中的字段。 SQL结果 SQL语句执行完成后,会得到对应的SQL结果,用于下一步转发处理。如果payload数据解析过程中出错会导致规则运行失败。 转发数据动作中的表达式需要使用 ${表达式} 引用对应的值。 对于上文例子,配置转发动作时,可以${t}、${deviceName}和${loaction}获取SQL解析结果,如果要将数据存储到TableStore,配置中可以使用${t}、${deviceName}和${loaction}。 数组使用说明 数组表达式需要使用双引号,比如设备消息为:{a:[{v:1},{v:2},{v:3}]},那么SQL语句中的select写法为:select "$.a[0]" data1,".a[1].v" data2,".a[2]" data3,则data1={v:1},data2=2,data3=[{v:3}]。 条件表达式支持列表 操作符 描述 举例 = 相等 color = ‘red’ <> 不等于 color <> ‘red’ AND 逻辑与 color = ‘red’ AND siren = ‘on’ OR 逻辑或 color = ‘red’ OR siren = ‘on’ ( ) 括号代表一个整体 color = ‘red’ AND (siren = ‘on’ OR isTest) + 算术加法 4 + 5 - 算术减 5 - 4 / 除 20 / 4 * 乘 5 * 4 % 取余数 20 % 6 < 小于 5 < 6 <= 小于或等于 5 <= 6 > 大于 6 > 5 >= 大于或等于 6 >= 5 函数调用 支持函数,详细列表请参考函数列表。 deviceId() JSON属性表达式 可以从消息payload以json表达式提取属性。 state.desired.color,a.b.c[0].d CASE … WHEN … THEN … ELSE …END Case 表达式 CASE col WHEN 1 THEN ‘Y’ WHEN 0 THEN ‘N’ ELSE ‘’ END as flag IN 仅支持枚举,不支持子查询。 比如 where a in(1,2,3)。不支持以下形式: where a in(select xxx) like 匹配某个字符, 仅支持%号通配符,代表匹配任意字符串。 比如 where c1 like ‘%abc’, where c1 not like ‘%def%’

2019-12-01 23:11:54 0 浏览量 回答数 0

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

回答

详细解答可以参考官方帮助文档 使用规则引擎时,若您的数据为JSON格式,可以编写SQL来解析和处理数据。规则引擎对二进制格式的数据不做解析,直接透传。本文主要讲解SQL表达式。 SQL表达式 JSON数据可以映射为虚拟的表,其中Key对应表的列,Value对应列值,这样就可以使用SQL处理。为便于理解,我们将规则引擎的一条规则抽象为一条SQL表达(类试MySQL语法): 例如某环境传感器用于火灾预警,可以采集温度、湿度及气压数据,上报数据内容如下: { "temperature":25.1 "humidity":65 "pressure":101.5 "location":"xxx,xxx" } 假定温度大于38,湿度小于40时,需要触发报警,可以编写如下的SQL语句:SELECT temperature as t, deviceName() as deviceName, location FROM /ProductA/+/update WHERE temperature > 38 and humidity < 40 当上报的数据中,温度大于38且湿度小于40时,会触发该规则,并且解析数据中的温度、设备名称、位置,用于进一步处理。 FROM FROM 需要填写Topic通配符,用于匹配需要处理的消息Topic。当有符合Topic规则的消息到达时,消息的payload数据以json格式解析,并根据SQL语句进行处理(如果消息格式不合法,将忽略此消息)。您可以使用topic()函数引用具体的Topic值。 上文例子中,"FROM /ProductA/+/update"语句表示该SQL仅处理符合/ProductA/+/update格式的消息,具体匹配参考 Topic。 SELECT JSON数据格式 select语句中的字段,可以使用上报消息的payload解析结果,即json中的键值,也可以使用SQL内置的函数,比如deviceName()。不支持子SQL查询。 上报的json数据格式,可以是数组或者嵌套的json,SQL语句支持使用json path获取其中的属性值,如对于{a:{key1:v1, key2:v2}},可以通过a.key2 获取到值v2。使用变量时需要注意单双引号区别:单引号表示常量,双引号或不加引号表示变量。如使用单引号'a.key2',值为a.key2。 内置的SQL函数可以参考函数列表。 例如上文,"SELECT temperature as t, deviceName() as deviceName, location"语句,其中temperature和loaction来自于上报数据中的字段,deviceName()则使用了内置的SQL函数。 二进制数据格式 目前二进制数据不支持解析payload中的字段,SELECT语句固定为SELECT *,表示透传二进制数据。 WHERE JSON数据格式 规则触发条件,条件表达式。不支持子SQL查询。WHERE中可以使用的字段和SELECT语句一致,当接收到对应topic的消息时,WHERE语句的结果会作为规则是否触发的判断条件。具体条件表达式列表见下方表格。上文例子中, "WHERE temperature > 38 and humidity < 40" 表示温度大于38且湿度小于40时,才会触发该规则,执行配置。 二进制数据格式 目前二进制格式WHERE语句中仅支持内置函数及条件表达式,无法使用payload中的字段。 SQL结果 SQL语句执行完成后,会得到对应的SQL结果,用于下一步转发处理。如果payload数据解析过程中出错会导致规则运行失败。 转发数据动作中的表达式需要使用 ${表达式} 引用对应的值。 对于上文例子,配置转发动作时,可以${t}、${deviceName}和${loaction}获取SQL解析结果,如果要将数据存储到TableStore,配置中可以使用${t}、${deviceName}和${loaction}。 数组使用说明 数组表达式需要使用双引号,比如设备消息为:{a:[{v:1},{v:2},{v:3}]},那么SQL语句中的select写法为:select "$.a[0]" data1,".a[1].v" data2,".a[2]" data3,则data1={v:1},data2=2,data3=[{v:3}]。 条件表达式支持列表 操作符 描述 举例 = 相等 color = ‘red’ <> 不等于 color <> ‘red’ AND 逻辑与 color = ‘red’ AND siren = ‘on’ OR 逻辑或 color = ‘red’ OR siren = ‘on’ ( ) 括号代表一个整体 color = ‘red’ AND (siren = ‘on’ OR isTest) + 算术加法 4 + 5 - 算术减 5 - 4 / 除 20 / 4 * 乘 5 * 4 % 取余数 20 % 6 < 小于 5 < 6 <= 小于或等于 5 <= 6 > 大于 6 > 5 >= 大于或等于 6 >= 5 函数调用 支持函数,详细列表请参考函数列表。 deviceId() JSON属性表达式 可以从消息payload以json表达式提取属性。 state.desired.color,a.b.c[0].d CASE … WHEN … THEN … ELSE …END Case 表达式 CASE col WHEN 1 THEN ‘Y’ WHEN 0 THEN ‘N’ ELSE ‘’ END as flag IN 仅支持枚举,不支持子查询。 比如 where a in(1,2,3)。不支持以下形式: where a in(select xxx) like 匹配某个字符, 仅支持%号通配符,代表匹配任意字符串。 比如 where c1 like ‘%abc’, where c1 not like ‘%def%’

2019-12-01 23:11:54 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 使用规则引擎时,若您的数据为JSON格式,可以编写SQL来解析和处理数据。规则引擎对二进制格式的数据不做解析,直接透传。本文主要讲解SQL表达式。 SQL表达式 JSON数据可以映射为虚拟的表,其中Key对应表的列,Value对应列值,这样就可以使用SQL处理。为便于理解,我们将规则引擎的一条规则抽象为一条SQL表达(类试MySQL语法): 例如某环境传感器用于火灾预警,可以采集温度、湿度及气压数据,上报数据内容如下: { "temperature":25.1 "humidity":65 "pressure":101.5 "location":"xxx,xxx" } 假定温度大于38,湿度小于40时,需要触发报警,可以编写如下的SQL语句:SELECT temperature as t, deviceName() as deviceName, location FROM /ProductA/+/update WHERE temperature > 38 and humidity < 40 当上报的数据中,温度大于38且湿度小于40时,会触发该规则,并且解析数据中的温度、设备名称、位置,用于进一步处理。 FROM FROM 需要填写Topic通配符,用于匹配需要处理的消息Topic。当有符合Topic规则的消息到达时,消息的payload数据以json格式解析,并根据SQL语句进行处理(如果消息格式不合法,将忽略此消息)。您可以使用topic()函数引用具体的Topic值。 上文例子中,"FROM /ProductA/+/update"语句表示该SQL仅处理符合/ProductA/+/update格式的消息,具体匹配参考 Topic。 SELECT JSON数据格式 select语句中的字段,可以使用上报消息的payload解析结果,即json中的键值,也可以使用SQL内置的函数,比如deviceName()。不支持子SQL查询。 上报的json数据格式,可以是数组或者嵌套的json,SQL语句支持使用json path获取其中的属性值,如对于{a:{key1:v1, key2:v2}},可以通过a.key2 获取到值v2。使用变量时需要注意单双引号区别:单引号表示常量,双引号或不加引号表示变量。如使用单引号'a.key2',值为a.key2。 内置的SQL函数可以参考函数列表。 例如上文,"SELECT temperature as t, deviceName() as deviceName, location"语句,其中temperature和loaction来自于上报数据中的字段,deviceName()则使用了内置的SQL函数。 二进制数据格式 目前二进制数据不支持解析payload中的字段,SELECT语句固定为SELECT *,表示透传二进制数据。 WHERE JSON数据格式 规则触发条件,条件表达式。不支持子SQL查询。WHERE中可以使用的字段和SELECT语句一致,当接收到对应topic的消息时,WHERE语句的结果会作为规则是否触发的判断条件。具体条件表达式列表见下方表格。上文例子中, "WHERE temperature > 38 and humidity < 40" 表示温度大于38且湿度小于40时,才会触发该规则,执行配置。 二进制数据格式 目前二进制格式WHERE语句中仅支持内置函数及条件表达式,无法使用payload中的字段。 SQL结果 SQL语句执行完成后,会得到对应的SQL结果,用于下一步转发处理。如果payload数据解析过程中出错会导致规则运行失败。 转发数据动作中的表达式需要使用 ${表达式} 引用对应的值。 对于上文例子,配置转发动作时,可以${t}、${deviceName}和${loaction}获取SQL解析结果,如果要将数据存储到TableStore,配置中可以使用${t}、${deviceName}和${loaction}。 数组使用说明 数组表达式需要使用双引号,比如设备消息为:{a:[{v:1},{v:2},{v:3}]},那么SQL语句中的select写法为:select "$.a[0]" data1,".a[1].v" data2,".a[2]" data3,则data1={v:1},data2=2,data3=[{v:3}]。 条件表达式支持列表 操作符 描述 举例 = 相等 color = ‘red’ <> 不等于 color <> ‘red’ AND 逻辑与 color = ‘red’ AND siren = ‘on’ OR 逻辑或 color = ‘red’ OR siren = ‘on’ ( ) 括号代表一个整体 color = ‘red’ AND (siren = ‘on’ OR isTest) + 算术加法 4 + 5 - 算术减 5 - 4 / 除 20 / 4 * 乘 5 * 4 % 取余数 20 % 6 < 小于 5 < 6 <= 小于或等于 5 <= 6 > 大于 6 > 5 >= 大于或等于 6 >= 5 函数调用 支持函数,详细列表请参考函数列表。 deviceId() JSON属性表达式 可以从消息payload以json表达式提取属性。 state.desired.color,a.b.c[0].d CASE … WHEN … THEN … ELSE …END Case 表达式 CASE col WHEN 1 THEN ‘Y’ WHEN 0 THEN ‘N’ ELSE ‘’ END as flag IN 仅支持枚举,不支持子查询。 比如 where a in(1,2,3)。不支持以下形式: where a in(select xxx) like 匹配某个字符, 仅支持%号通配符,代表匹配任意字符串。 比如 where c1 like ‘%abc’, where c1 not like ‘%def%’

2019-12-01 23:11:54 0 浏览量 回答数 0

问题

MySQL数据库的优化

chuanshuolian 2019-12-01 20:18:08 10267 浏览量 回答数 2

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

mysql的定时任务一般用event(事件)来完成,触发器无法完成。一、通过mysql的命令行客户端来完成 1、set global event_scheduler =1; //开启event_scheduler 执行这个语句如果出现,可在mysql的配置文档中设置[mysqld]段中添加 event_scheduler=ON 如果重启mysql;这种情况下依然出错,Error Code: 1290. The MySQL server is running with the --event-scheduler=DISABLED or --skip-grant-tables option so it cannot execute this statement,这个错误是说启动服务器时如果指定了--skip-grant-tables选项,则event_scheduler则自动被设置为DISABLED。命令行或配置文件的设置都会被覆盖。建议重现安装mysql或是修改启动参数(在系统服务中指定)。 查看event_scheduler状态:show status like '%event%'; 或SELECT @@event_scheduler; 2、CREATE PROCEDURE Mypro() //创建存储过程 BEGIN update userinfo SET endtime = now() WHERE id = '155'; END; 3、创建event My_enevt,每隔三十秒执行一次 create event if not exists e_test on schedule every 30 second on completion preserve do call Mypro(); 4、关闭事件 alter event e_test ON COMPLETION PRESERVE DISABLE; 5、开启事件 alter event e_test ON COMPLETION PRESERVE ENABLE; 语法: CREATE EVENT [IF NOT EXISTS] event_name ON SCHEDULE schedule [ON COMPLETION [NOT] PRESERVE] [ENABLE | DISABLE] [COMMENT 'comment'] DO sql_statement; schedule: AT TIMESTAMP [+ INTERVAL INTERVAL] | EVERY INTERVAL [STARTS TIMESTAMP] [ENDS TIMESTAMP] INTERVAL: quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE | WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE | DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND} 答案来源于网络,供参考,希望有所帮助。

问问小秘 2019-12-02 02:18:04 0 浏览量 回答数 0

回答

MySQL中主要有三种类型的变量: 用户定义的变量(以开头@): 您可以访问任何用户定义的变量,而无需对其进行声明或初始化。如果引用的变量尚未初始化,则其值为NULL和字符串类型。 SELECT @var_any_var_name 您可以使用SET或SELECT语句来初始化变量: SET @start = 1, @finish = 10; 要么 SELECT @start := 1, @finish := 10; SELECT * FROM places WHERE place BETWEEN @start AND @finish; 可以从一组有限的数据类型中为用户变量分配一个值:整数,十进制,浮点数,二进制或非二进制字符串或NULL值。 用户定义的变量是特定于会话的。即,一个客户端定义的用户变量不能被其他客户端看到或使用。 可以SELECT使用高级MySQL用户变量技术在查询中使用它们。 局部变量(无前缀): 局部变量需要在使用DECLARE之前声明。 它们可用作存储过程内的局部变量和输入参数: DELIMITER // CREATE PROCEDURE sp_test(var1 INT) BEGIN DECLARE start INT unsigned DEFAULT 1; DECLARE finish INT unsigned DEFAULT 10; SELECT var1, start, finish; SELECT * FROM places WHERE place BETWEEN start AND finish; END; // DELIMITER ; CALL sp_test(5); 如果DEFAULT缺少该子句,则初始值为NULL。 局部变量的范围是BEGIN ... END在其内声明的块。 服务器系统变量(以前缀@@): MySQL服务器维护许多配置为默认值的系统变量。它们可以是类型GLOBAL,SESSION或BOTH。 全局变量影响服务器的整体操作,而会话变量影响单个客户端连接的服务器操作。 要查看正在运行的服务器使用的当前值,请使用SHOW VARIABLES语句或SELECT @@var_name。 SHOW VARIABLES LIKE '%wait_timeout%'; SELECT @@sort_buffer_size; 可以在服务器启动时使用命令行或选项文件中的选项来设置它们。其中的大多数可以在服务器运行时使用SET GLOBAL或动态更改SET SESSION: -- Syntax to Set value to a Global variable: SET GLOBAL sort_buffer_size=1000000; SET @@global.sort_buffer_size=1000000; -- Syntax to Set value to a Session variable: SET sort_buffer_size=1000000; SET SESSION sort_buffer_size=1000000; SET @@sort_buffer_size=1000000; SET @@local.sort_buffer_size=10000;来源:stack overflow

保持可爱mmm 2020-05-10 19:03:57 0 浏览量 回答数 0

回答

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构的特点,存在多种数据存储引擎,每种存储引擎所针对的应用场景特点都不太一样,为了满足各自特定应用场景的需求,每种存储引擎的锁定机制都是为各自所面对的特定场景而优化设计,所以各存储引擎的锁定机制也有较大区别。MySQL各存储引擎使用了三种类型(级别)的锁定机制:表级锁定,行级锁定和页级锁定。 1.表级锁定(table-level) 表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。 当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。 使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。 2.行级锁定(row-level) 行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。 虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 使用行级锁定的主要是InnoDB存储引擎。 3.页级锁定(page-level) 页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。 在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。 使用页级锁定的主要是BerkeleyDB存储引擎。 总的来说,MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低; 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高; 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。 -------------MYSQL处理------------------ 表级锁定 由于MyISAM存储引擎使用的锁定机制完全是由MySQL提供的表级锁定实现,所以下面我们将以MyISAM存储引擎作为示例存储引擎。 1.MySQL表级锁的锁模式 MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性: 对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求; 对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作; MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 2.如何加表锁 MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。 3.MyISAM表锁优化建议 对于MyISAM存储引擎,虽然使用表级锁定在锁定实现的过程中比实现行级锁定或者页级锁所带来的附加成本都要小,锁定本身所消耗的资源也是最少。但是由于锁定的颗粒度比较到,所以造成锁定资源的争用情况也会比其他的锁定级别都要多,从而在较大程度上会降低并发处理能力。所以,在优化MyISAM存储引擎锁定问题的时候,最关键的就是如何让其提高并发度。由于锁定级别是不可能改变的了,所以我们首先需要尽可能让锁定的时间变短,然后就是让可能并发进行的操作尽可能的并发。 (1)查询表级锁争用情况 MySQL内部有两组专门的状态变量记录系统内部锁资源争用情况: mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 10 | +----------------------------+---------+ 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下: Table_locks_immediate:产生表级锁定的次数; Table_locks_waited:出现表级锁定争用而发生等待的次数; 两个状态值都是从系统启动后开始记录,出现一次对应的事件则数量加1。如果这里的Table_locks_waited状态值比较高,那么说明系统中表级锁定争用现象比较严重,就需要进一步分析为什么会有较多的锁定资源争用了。 (2)缩短锁定时间 如何让锁定时间尽可能的短呢?唯一的办法就是让我们的Query执行时间尽可能的短。 a)尽两减少大的复杂Query,将复杂Query分拆成几个小的Query分布进行; b)尽可能的建立足够高效的索引,让数据检索更迅速; c)尽量让MyISAM存储引擎的表只存放必要的信息,控制字段类型; d)利用合适的机会优化MyISAM表数据文件。 (3)分离能并行的操作 说到MyISAM的表锁,而且是读写互相阻塞的表锁,可能有些人会认为在MyISAM存储引擎的表上就只能是完全的串行化,没办法再并行了。大家不要忘记了,MyISAM的存储引擎还有一个非常有用的特性,那就是ConcurrentInsert(并发插入)的特性。 MyISAM存储引擎有一个控制是否打开Concurrent Insert功能的参数选项:concurrent_insert,可以设置为0,1或者2。三个值的具体说明如下: concurrent_insert=2,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录; concurrent_insert=1,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置; concurrent_insert=0,不允许并发插入。 可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。 (4)合理利用读写优先级 MyISAM存储引擎的是读写互相阻塞的,那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢? 答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前。 这是因为MySQL的表级锁定对于读和写是有不同优先级设定的,默认情况下是写优先级要大于读优先级。 所以,如果我们可以根据各自系统环境的差异决定读与写的优先级: 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接读比写的优先级高。如果我们的系统是一个以读为主,可以设置此参数,如果以写为主,则不用设置; 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”,因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行 三、行级锁定 行级锁定不是MySQL自己实现的锁定方式,而是由其他存储引擎自己所实现的,如广为大家所知的InnoDB存储引擎,以及MySQL的分布式存储引擎NDBCluster等都是实现了行级锁定。考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 1.InnoDB锁定模式及实现机制 考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 总的来说,InnoDB的锁定机制和Oracle数据库有不少相似之处。InnoDB的行级锁定同样分为两种类型,共享锁和排他锁,而在锁定机制的实现过程中为了让行级锁定和表级锁定共存,InnoDB也同样使用了意向锁(表级锁定)的概念,也就有了意向共享锁和意向排他锁这两种。 当一个事务需要给自己需要的某个资源加锁的时候,如果遇到一个共享锁正锁定着自己需要的资源的时候,自己可以再加一个共享锁,不过不能加排他锁。但是,如果遇到自己需要锁定的资源已经被一个排他锁占有之后,则只能等待该锁定释放资源之后自己才能获取锁定资源并添加自己的锁定。而意向锁的作用就是当一个事务在需要获取资源锁定的时候,如果遇到自己需要的资源已经被排他锁占用的时候,该事务可以需要锁定行的表上面添加一个合适的意向锁。如果自己需要一个共享锁,那么就在表上面添加一个意向共享锁。而如果自己需要的是某行(或者某些行)上面添加一个排他锁的话,则先在表上面添加一个意向排他锁。意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。所以,可以说InnoDB的锁定模式实际上可以分为四种:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX),我们可以通过以下表格来总结上面这四种所的共存逻辑关系 如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。 但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 2.InnoDB行锁实现方式 InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 (2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。 (3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 (4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。 3.间隙锁(Next-Key锁) 当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁; 对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 例: 假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: mysql> select * from emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的: (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读; (2)为了满足其恢复和复制的需要。 很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。 除了间隙锁给InnoDB带来性能的负面影响之外,通过索引实现锁定的方式还存在其他几个较大的性能隐患: (1)当Query无法利用索引的时候,InnoDB会放弃使用行级别锁定而改用表级别的锁定,造成并发性能的降低; (2)当Query使用的索引并不包含所有过滤条件的时候,数据检索使用到的索引键所只想的数据可能有部分并不属于该Query的结果集的行列,但是也会被锁定,因为间隙锁锁定的是一个范围,而不是具体的索引键; (3)当Query在使用索引定位数据的时候,如果使用的索引键一样但访问的数据行不同的时候(索引只是过滤条件的一部分),一样会被锁定。 因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁。 4.死锁 MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。 在InnoDB的事务管理和锁定机制中,有专门检测死锁的机制,会在系统中产生死锁之后的很短时间内就检测到该死锁的存在。当InnoDB检测到系统中产生了死锁之后,InnoDB会通过相应的判断来选这产生死锁的两个事务中较小的事务来回滚,而让另外一个较大的事务成功完成。 那InnoDB是以什么来为标准判定事务的大小的呢?MySQL官方手册中也提到了这个问题,实际上在InnoDB发现死锁之后,会计算出两个事务各自插入、更新或者删除的数据量来判定两个事务的大小。也就是说哪个事务所改变的记录条数越多,在死锁中就越不会被回滚掉。 但是有一点需要注意的就是,当产生死锁的场景中涉及到不止InnoDB存储引擎的时候,InnoDB是没办法检测到该死锁的,这时候就只能通过锁定超时限制参数InnoDB_lock_wait_timeout来解决。 需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。 通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法: (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。 (3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。 (4)在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。 (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。 5.什么时候使用表锁 对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁: (1)事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。 (2)事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。 应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。 在InnoDB下,使用表锁要注意以下两点。 (1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、InnoDB_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁,否则,InnoDB将无法自动检测并处理这种死锁。 (2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。

1006541099824509 2019-12-02 03:14:39 0 浏览量 回答数 0

问题

discuz附件图片迁移阿里云OSS(完整版)

baker668 2019-12-01 21:03:11 29889 浏览量 回答数 17

回答

*1、查询SQL尽量不要使用select ,而是select具体字段。 反例子: select * from employee; 正例子: select id,name from employee; 理由: 只取需要的字段,节省资源、减少网络开销。select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。 2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1 假设现在有employee员工表,要找出一个名字叫jay的人. CREATE TABLE `employee` ( `id` int(11) NOT NULL, `name` varchar(255) DEFAULT NULL, `age` int(11) DEFAULT NULL, `date` datetime DEFAULT NULL, `sex` int(1) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 反例: select id,name from employee where name='jay' 正例 select id,name from employee where name='jay' limit 1; 理由: 加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,如果一个语句本身可以预知不用全表扫描,有没有limit ,性能的差别并不大。 3、应尽量避免在where子句中使用or来连接条件 新建一个user表,它有一个普通索引userId,表结构如下: CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `userId` int(11) NOT NULL, `age` int(11) NOT NULL, `name` varchar(255) NOT NULL, PRIMARY KEY (`id`), KEY `idx_userId` (`userId`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql 反例: select * from user where userid=1 or age =18 正例: //使用union all select * from user where userid=1 union all select * from user where age = 18 //或者分开两条sql写: select * from user where userid=1 select * from user where age = 18 理由: 使用or可能会使索引失效,从而全表扫描。 对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程: 全表扫描+索引扫描+合并 如果它一开始就走全表扫描,直接一遍扫描就完事。 mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。 4、优化limit分页 我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。 反例: select id,name,age from employee limit 10000,10 正例: //方案一 :返回上次查询的最大记录(偏移量) select id,name from employee where id>10000 limit 10. //方案二:order by + 索引 select id,name from employee order by id limit 10000,10 //方案三:在业务允许的情况下限制页数: 理由: 当偏移量最大的时候,查询效率就会越低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段的数据抛弃掉再返回的。 如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提升不少。 方案二使用order by+索引,也是可以提高查询效率的。 方案三的话,建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。 5、优化你的like语句 日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。 反例: select userId,name from user where userId like '%123'; 正例: select userId,name from user where userId like '123%'; 理由: 把%放前面,并不走索引,如下: 把% 放关键字后面,还是会走索引的。如下: 6、使用where条件限定要查询的数据,避免返回多余的行 假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。 反例: List<Long> userIds = sqlMap.queryList("select userId from user where isVip=1"); boolean isVip = userIds.contains(userId); 正例: Long userId = sqlMap.queryObject("select userId from user where userId='userId' and isVip='1' ") boolean isVip = userId!=null; 理由: 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销。 7、尽量避免在索引列上使用mysql的内置函数 业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引) 反例: select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >=now(); 正例: explain select userId,loginTime from loginuser where loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY); 理由: 索引列上使用mysql的内置函数,索引失效 8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫 反例: select * from user where age-1 =10; 正例: select * from user where age =11; 理由: 9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小 Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集 left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。 right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。 都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。 反例: select * from tab1 t1 left join tab2 t2 on t1.size = t2.size where t1.id>2; 正例: select * from (select * from tab1 where id >2) t1 left join tab2 t2 on t1.size = t2.size; 理由: 如果inner join是等值连接,或许返回的行数比较少,所以性能相对会好一点。 同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。 10、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 反例: select age,name from user where age <>18; 正例: //可以考虑分开两条sql写 select age,name from user where age <18; select age,name from user where age >18; 理由: 使用!=和<>很可能会让索引失效 11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。 表结构:(有一个联合索引idx_userid_age,userId在前,age在后) CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `userId` int(11) NOT NULL, `age` int(11) DEFAULT NULL, `name` varchar(255) NOT NULL, PRIMARY KEY (`id`), KEY `idx_userid_age` (`userId`,`age`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; 反例: select * from user where age = 10; 正例: //符合最左匹配原则 select * from user where userid=10 and age =10; //符合最左匹配原则 select * from user where userid =10; 理由: 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。 12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。 反例: select * from user where address ='深圳' order by age ; 正例: 添加索引 alter table user add index idx_address_age (address,age) 13、如果插入数据过多,考虑批量插入。 反例: for(User u :list){ INSERT into user(name,age) values(#name#,#age#) } 正例: //一次500批量插入,分批进行 insert into user(name,age) values <foreach collection="list" item="item" index="index" separator=","> (#{item.name},#{item.age}) </foreach> 理由: 批量插入性能好,更加省时间 打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500,你觉得哪个时间消耗大? 14、在适当的时候,使用覆盖索引。 覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。 反例: // like模糊查询,不走索引了 select * from user where userid like '%123%' 正例: //id为主键,那么为普通索引,即覆盖索引登场了。 select id,name from user where userid like '%123%'; 15、慎用distinct关键字 distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。 反例: SELECT DISTINCT * from user; 正例: select DISTINCT name from user; 理由: 带distinct的语句cpu时间和占用时间都高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较,过滤的过程会占用系统资源,cpu时间。 16、删除冗余和重复索引 反例: KEY `idx_userId` (`userId`) KEY `idx_userId_age` (`userId`,`age`) 正例: //删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引 KEY `idx_userId_age` (`userId`,`age`) 理由: 重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能的。 17、如果数据量较大,优化你的修改/删除语句。 避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。 反例: //一次删除10万或者100万+? delete from user where id <100000; //或者采用单一循环操作,效率低,时间漫长 for(User user:list){ delete from user; } 正例: //分批进行删除,如每次500 delete user where id<500 delete product where id>=500 and id<1000; 理由: 一次性删除太多数据,可能会有lock wait timeout exceed的错误,所以建议分批操作。 18、where子句中考虑使用默认值代替null。 反例: select * from user where age is not null; 正例: //设置0为默认值 select * from user where age>0; 理由: 并不是说使用了is null 或者 is not null 就会不走索引了,这个跟mysql版本以及查询成本都有关。 如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件!=,>is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。 如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思会相对清晰一点。 19、不要有超过5个以上的表连接 连表越多,编译的时间和开销也就越大。 把连接表拆开成较小的几个执行,可读性更高。 如果一定需要连接很多表才能得到数据,那么意味着糟糕的设计了。 20、exist & in的合理利用 假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL: select * from A where deptId in (select deptId from B); 这样写等价于: 先查询部门表B select deptId from B 再由部门deptId,查询A的员工 select * from A where A.deptId = B.deptId 可以抽象成这样的一个循环: List<> resultSet ; for(int i=0;i<B.length;i++) { for(int j=0;j<A.length;j++) { if(A[i].id==B[j].id) { resultSet.add(A[i]); break; } } } 显然,除了使用in,我们也可以用exists实现一样的查询功能,如下: select * from A where exists (select 1 from B where A.deptId = B.deptId); 因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。 那么,这样写就等价于: select * from A,先从A表做循环 select * from B where A.deptId = B.deptId,再从B表做循环. 同理,可以抽象成这样一个循环: List<> resultSet ; for(int i=0;i<A.length;i++) { for(int j=0;j<B.length;j++) { if(A[i].deptId==B[j].deptId) { resultSet.add(A[i]); break; } } } 数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。 因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist。 21、尽量用 union all 替换 union 如果检索结果中不会有重复的记录,推荐union all 替换 union。 反例: select * from user where userid=1 union select * from user where age = 10 正例: select * from user where userid=1 union all select * from user where age = 10 理由: 如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。如果已知检索结果没有重复记录,使用union all 代替union,这样会提高效率。 22、索引不宜太多,一般5个以内。 索引并不是越多越好,索引虽然提高了查询的效率,但是也降低了插入和更新的效率。 insert或update时有可能会重建索引,所以建索引需要慎重考虑,视具体情况来定。 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否没有存在的必要。 23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型 反例: king_id` varchar(20) NOT NULL COMMENT '守护者Id' 正例: `king_id` int(11) NOT NULL COMMENT '守护者Id'` 理由: 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。 24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。 因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。 25、尽量避免向客户端返回过多数据量。 假设业务需求是,用户请求查看自己最近一年观看过的直播数据。 反例: //一次性查询所有数据回来 select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y) 正例: //分页查询 select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit offset,pageSize //如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页, select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit 200 ; 26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。 反例: select * from A inner join B on A.deptId = B.deptId; 正例: select memeber.name,deptment.deptName from A member inner join B deptment on member.deptId = deptment.deptId; 27、尽可能使用varchar/nvarchar 代替 char/nchar。 反例: `deptName` char(100) DEFAULT NULL COMMENT '部门名称' 正例: `deptName` varchar(100) DEFAULT NULL COMMENT '部门名称' 理由: 因为首先变长字段存储空间小,可以节省存储空间。 其次对于查询来说,在一个相对较小的字段内搜索,效率更高。 28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。 反例: select job,avg(salary) from employee group by job having job ='president' or job = 'managent' 正例: select job,avg(salary) from employee where job ='president' or job = 'managent' group by job; 29、如何字段类型是字符串,where时一定用引号括起来,否则索引失效 反例: select * from user where userid =123; 正例: select * from user where userid ='123'; 理由: 为什么第一条语句未加单引号就不走索引了呢? 这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。 30、使用explain 分析你SQL的计划 日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。 explain select * from user where userid =10086 or age =18;

剑曼红尘 2020-04-21 14:01:32 0 浏览量 回答数 0

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。

玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

回答

本文介绍AliSQL的内核版本更新说明。 MySQL 8.0 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 允许在只读实例上进行语句级并发控制(CCL)操作。 备实例支持Outline。 Proxy短连接优化。 优化不同CPU架构下的pause指令执行时间。 添加内存表查看线程池运行情况。 Bug修复 在低于4.9的Linux Kenerls中禁用ppoll,使用poll代替。 修复wrap_sm4_encrypt函数调用错误问题。 修复在滚动审核日志时持有全局变量锁的问题。 修复恢复不一致性检查的问题。 修复io_statistics表出现错误time值的问题。 修复无效压缩算法导致崩溃的问题。 修复用户列与5.6不兼容的问题。 20200110 新特性 Inventory Hint:新增了三个hint, 支持SELECT、UPDATE、INSERT、DELETE 语句,快速提交/回滚事务,提高业务吞吐能力。 性能优化 启动实例时,先初始化Concurrency Control队列结构,再初始化Concurrency Control规则。 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 默认情况下禁用恢复不一致性检查。 更改设置变量所需的权限: 设置以下变量所需的权限已更改为普通用户权限: auto_increment_increment auto_increment_offset bulk_insert_buffer_size binlog_rows_query_log_events 设置以下变量所需的权限已更改为超级用户或系统变量管理用户权限: binlog_format binlog_row_image binlog_direct sql_log_off sql_log_bin 20191225 新特性 Recycle Bin:临时将删除的表转移到回收站,还可以设置保留的时间,方便您找回数据。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 通过Redo刷新Binlog时出现错误会显式释放文件同步锁。 删除不必要的TCP错误日志。 默认情况下启用线程池。 Bug修复 修复慢日志刷新的问题。 修复锁定范围不正确的问题。 修复TDE的Select函数导致的核心转储问题。 20191115 新特性 Statement Queue:针对语句的排队机制,将语句进行分桶排队,尽量把可能具有相同冲突的语句放在一个桶内排队,减少冲突的开销。 20191101 新特性 为TDE添加SM4加密算法。 保护备实例信息:拥有SUPER或REPLICATION_SLAVE_ADMIN权限的用户才能插入/删除/修改表slave_master_info、slave_relay_log_info、slave_worker_info。 提高自动递增键的优先级:如果表中没有主键或非空唯一键,具有自动增量的非空键将是第一候选项。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 Redo Log刷新到磁盘之前先将Binlog文件刷新到磁盘。 实例被锁定时也会影响临时表。 添加新的基于LSM树的事务存储引擎X-Engine。 性能优化 Thread Pool:互斥优化。 Performance Insight:性能点支持线程池。 参数调整: primary_fast_lookup:会话参数,默认值为true。 thread_pool_enabled:全局参数,默认值为true。 20191015 新特性 TDE:支持透明数据加密TDE(Transparent Data Encryption)功能,可对数据文件执行实时I/O加密和解密,数据在写入磁盘之前进行加密,从磁盘读入内存时进行解密。 Returning:Returning功能支持DML语句返回Resultset,同时提供了工具包(DBMS_TRANS)便于您快捷使用。 强制将引擎从MyISAM/MEMORY转换为InnoDB:如果全局变量force_memory/mysiam_to_innodb为ON,则创建/修改表时会将表引擎从MyISAM/MEMORY转换为InnoDB。 禁止非高权限账号切换主备实例。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮循方式,保留最近的秒级性能数据。 Innodb mutex timeout cofigurable:可配置全局变量innodb_fatal_semaphore_wait_threshold,默认值:600。 忽略索引提示错误:可配置全局变量ignore_index_hint_error,默认值:false。 可关闭SSL加密功能。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 支持本地AIO的Linux系统内,在触发线性预读之前会合并AIO请求。 优化表/索引统计信息。 如果指定了主键,则直接访问主索引。 20190915 Bug修复 修复Cmd_set_current_connection内存泄露问题。 20190816 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 Statement Concurrency Control:通过控制并发数应对突发的数据库请求流量、资源消耗过高的语句访问以及SQL访问模型的变化,保证MySQL实例持续稳定运行。 Statement Outline:利用Optimizer Hint和Index Hint让MySQL稳定执行计划。 Sequence Engine:简化获取序列值的复杂度。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 修复文件大小计算错误的问题。 修复偶尔出现的内存空闲后再次使用的问题。 修复主机缓存大小为0时的崩溃问题。 修复隐式主键与CTS语句的冲突问题。 修复慢查询导致的slog出错问题。 20190601 性能优化 缩短日志表MDL范围,减少MDL阻塞的可能性。 重构终止选项的代码。 Bug修复 修复审计日志中没有记录预编译语句的问题。 屏蔽无效表名的错误日志。 MySQL 5.7基础版/高可用版 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 优化不同CPU架构下的pause指令执行时间。 Proxy短连接优化。 添加内存表查看线程池运行情况。 Bug修复 修复DDL重做日志不安全的问题。 修复io_statistics表出现错误time值的问题。 修复更改表导致服务器崩溃的问题。 修复MySQL测试用例。 20200110 性能优化 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 thread_pool_enabled参数的默认值调整为OFF。 20191225 新特性 内部账户管理与防范:调整用户权限保护数据安全。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 删除不必要的TCP错误日志。 优化线程池。 Bug修复 修复读写分离时mysqld进程崩溃问题。 修复密钥环引起的核心转储问题。 20191115 Bug修复 修复主备切换后审计日志显示变量的问题。 20191101 新特性 为TDE添加SM4加密算法。 如果指定了主键,则直接访问主索引。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 性能优化 Thread Pool:互斥优化。 引入审计日志缓冲机制,提高审计日志的性能。 Performance Insight:性能点支持线程池。 默认开启Thread Pool。 Bug修复 在处理维护用户列表时释放锁。 补充更多TCP错误信息。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮轮循方式,保留最近的秒级性能数据。 强制将引擎从MEMORY转换为InnoDB:如果全局变量rds_force_memory_to_innodb为ON,则创建/修改表时会将表引擎从MEMORY转换为InnoDB。 TDE机制优化:添加keyring-rds插件与管控系统/密钥管理服务进行交互。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 修复DDL中的意外错误Error 1290。 20190925 参数修改 将系统变量auto_generate_certs的默认值由true改为false。 增加全局只读变量auto_detact_certs,默认值为false,有效值为[true | false]。 该系统变量在Server端使用OpenSSL编译时可用,用于控制Server端在启动时是否在数据目录下自动查找SSL加密证书和密钥文件,即控制是否开启Server端的证书和密钥的自动查找功能。 20190915 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 20190815 新特性 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 禁止在set rds_current_connection命令中设置rds_prepare_begin_id。 允许更改已锁定用户的信息。 禁止用关键字actual作为表名。 修复慢日志导致时间字段溢出的问题。 20190510版本 新特性:允许在事务内创建临时表。 20190319版本 新特性:支持在handshake报文内代理设置threadID。 20190131版本 升级到官方5.7.25版本。 关闭内存管理功能jemalloc。 修复内部变量net_lenth_size计算错误问题。 20181226版本 新特性:支持动态修改binlog-row-event-max-size,加速无主键表的复制。 修复Proxy实例内存申请异常的问题。 20181010版本 支持隐式主键。 加快无主键表的主备复制。 支持Native AIO,提升I/O性能。 20180431版本 新特性: 支持高可用版。 支持SQL审计。 增强对处于快照备份状态的实例的保护。 MySQL 5.7三节点企业版 20191128 新特性 支持读写分离。 Bug修复 修复部分场景下Follower Second_Behind_Master计算错误问题。 修复表级并行复制事务重试时死锁问题。 修复XA相关bug。 20191016 新特性 支持MySQL 5.7高可用版(本地SSD盘)升级到三节点企业版。 兼容MySQL官方GTID功能,默认不开启。 合并AliSQL MySQL 5.7基础版/高可用版 20190915版本及之前的自研功能。 Bug修复 修复重置备实例导致binlog被关闭问题。 20190909 新特性 优化大事务在三节点强一致状态下的执行效率。 支持从Leader/Follower进行Binlog转储。 支持创建只读实例。 系统表默认使用InnoDB引擎。 Bug修复 修复Follower日志清理命令失效问题。 修复参数slave_sql_verify_checksum=OFF和binlog_checksum=crc32时Slave线程异常退出问题。 20190709 新特性 支持三节点功能。 禁用semi-sync插件。 支持表级并行复制、Writeset并行复制。 支持pk_access主键查询加速。 支持线程池。 合并AliSQL MySQL 5.7基础版/高可用版 20190510版本及之前的自研功能。 MySQL 5.6 20200229 新特性 支持Proxy读写分离功能。 性能优化 优化线程池功能。 优化不同CPU架构下的pause指令执行时间。 Bug修复 修复XA事务部分提交的问题。 20200110 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 性能优化 异步清除文件时继续取消小文件的链接。 Bug修复 修复页面清理程序的睡眠时间计算不正确问题。 修复SELECT @@global.gtid_executed导致的故障转移失败问题。 修复IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS COMMITTED问题。 20191212 性能优化 删除不必要的tcp错误日志 20191115 Bug修复 修复慢日志时间戳溢出问题。 20191101 Bug修复 修复刷新日志时切换慢日志的问题,仅在执行刷新慢日志时切换慢日志。 修正部分显示错误。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 SM4加密算法:添加新的SM4加密算法,取代旧的SM加密算法。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 引入审计日志缓冲机制,提高审计日志的性能。。 Bug修复 禁用pstack,避免存在大量连接时可能导致pstack无响应。 修复隐式主键与create table as select语句之间的冲突。 自动清除由二进制日志创建的临时文件。 20190815 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 20190130版本 修复部分可能导致系统不稳定的bug。 20181010版本 添加参数rocksdb_ddl_commit_in_the_middle(MyRocks)。如果这个参数被打开,部分DDL在执行过程中将会执行commit操作。 201806** (5.6.16)版本 新特性:slow log精度提升为微秒。 20180426(5.6.16)版本 新特性:引入隐藏索引,支持将索引设置为不可见,详情请参见参考文档。 修复备库apply线程的bug。 修复备库apply分区表更新时性能下降问题。 修复TokuDB下alter table comment重建整张表问题,详情请参见参考文档。 修复由show slave status/show status可能触发的死锁问题。 20171205(5.6.16)版本 修复OPTIMIZE TABLE和ONLINE ALTER TABLE同时执行时会触发死锁的问题。 修复SEQUENCE与隐含主键冲突的问题。 修复SHOW CREATE SEQUENCE问题。 修复TokuDB引擎的表统计信息错误。 修复并行OPTIMIZE表引入的死锁问题。 修复QUERY_LOG_EVENT中记录的字符集问题。 修复信号处理引起的数据库无法停止问题,详情请参见参考文档。 修复RESET MASTER引入的问题。 修复备库陷入等待的问题。 修复SHOW CREATE TABLE可能触发的进程崩溃问题。 20170927(5.6.16)版本 修复TokuDB表查询时使用错误索引问题。 20170901(5.6.16)版本 新特性: 升级SSL加密版本到TLS 1.2,详情请参见参考文档。 支持Sequence。 修复NOT IN查询在特定场景下返回结果集有误的问题。 20170530 (5.6.16)版本 新特性:支持高权限账号Kill其他账号下的连接。 20170221(5.6.16)版本 新特性:支持读写分离简介。 MySQL 5.5 20181212 修复调用系统函数gettimeofday(2) 返回值不准确的问题。该系统函数返回值为时间,常用来计算等待超时,时间不准确时会导致一些操作永不超时。

游客yl2rjx5yxwcam 2020-03-08 13:18:55 0 浏览量 回答数 0

问题

全球级的分布式数据库 Google Spanner原理 热:报错

kun坤 2020-06-09 15:26:35 4 浏览量 回答数 1

问题

SQLServer性能数据解析

玄学酱 2019-12-01 22:07:38 2366 浏览量 回答数 1

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20200921)

亢海鹏 2020-05-29 15:10:00 19050 浏览量 回答数 5

问题

SQL 兼容性怎么样?

猫饭先生 2019-12-01 21:19:24 905 浏览量 回答数 0

回答

如大家所知道的,Mysql目前主要有以下几种索引类型:FULLTEXT,HASH,BTREE,RTREE。 那么,这几种索引有什么功能和性能上的不同呢? FULLTEXT 即为全文索引,目前只有MyISAM引擎支持。其可以在CREATE TABLE ,ALTER TABLE ,CREATE INDEX 使用,不过目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE INDEX创建FULLTEXT索引,要比先为一张表建立FULLTEXT然后再将数据写入的速度快很多。 全文索引并不是和MyISAM一起诞生的,它的出现是为了解决WHERE name LIKE “%word%"这类针对文本的模糊查询效率较低的问题。在没有全文索引之前,这样一个查询语句是要进行遍历数据表操作的,可见,在数据量较大时是极其的耗时的,如果没有异步IO处理,进程将被挟持,很浪费时间,当然这里不对异步IO作进一步讲解,想了解的童鞋,自行谷哥。 全文索引的使用方法并不复杂: 创建ALTER TABLE table ADD INDEX FULLINDEX USING FULLTEXT(cname1[,cname2…]); 使用SELECT * FROM table WHERE MATCH(cname1[,cname2…]) AGAINST ('word' MODE ); 其中, MODE为搜寻方式(IN BOOLEAN MODE ,IN NATURAL LANGUAGE MODE ,IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION / WITH QUERY EXPANSION)。 关于这三种搜寻方式,愚安在这里也不多做交代,简单地说,就是,布尔模式,允许word里含一些特殊字符用于标记一些具体的要求,如+表示一定要有,-表示一定没有,*表示通用匹配符,是不是想起了正则,类似吧;自然语言模式,就是简单的单词匹配;含表达式的自然语言模式,就是先用自然语言模式处理,对返回的结果,再进行表达式匹配。 对搜索引擎稍微有点了解的同学,肯定知道分词这个概念,FULLTEXT索引也是按照分词原理建立索引的。西文中,大部分为字母文字,分词可以很方便的按照空格进行分割。但很明显,中文不能按照这种方式进行分词。那又怎么办呢?这个向大家介绍一个Mysql的中文分词插件Mysqlcft,有了它,就可以对中文进行分词,想了解的同学请移步Mysqlcft,当然还有其他的分词插件可以使用。 HASH Hash这个词,可以说,自打我们开始码的那一天起,就开始不停地见到和使用到了。其实,hash就是一种(key=>value)形式的键值对,如数学中的函数映射,允许多个key对应相同的value,但不允许一个key对应多个value。正是由于这个特性,hash很适合做索引,为某一列或几列建立hash索引,就会利用这一列或几列的值通过一定的算法计算出一个hash值,对应一行或几行数据(这里在概念上和函数映射有区别,不要混淆)。在java语言中,每个类都有自己的hashcode()方法,没有显示定义的都继承自object类,该方法使得每一个对象都是唯一的,在进行对象间equal比较,和序列化传输中起到了很重要的作用。hash的生成方法有很多种,足可以保证hash码的唯一性,例如在MongoDB中,每一个document都有系统为其生成的唯一的objectID(包含时间戳,主机散列值,进程PID,和自增ID)也是一种hash的表现。额,我好像扯远了-_-! 由于hash索引可以一次定位,不需要像树形索引那样逐层查找,因此具有极高的效率。那为什么还需要其他的树形索引呢? 在这里愚安就不自己总结了。引用下园子里其他大神的文章:来自 14的路 的MySQL的btree索引和hash索引的区别 (1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。 由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。 (2)Hash 索引无法被用来避免数据的排序操作。 由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算; (3)Hash 索引不能利用部分索引键查询。 对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。 (4)Hash 索引在任何时候都不能避免表扫描。 前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。 (5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。 对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。 愚安我稍作补充,讲一下HASH索引的过程,顺便解释下上面的第4,5条: 当我们为某一列或某几列建立hash索引时(目前就只有MEMORY引擎显式地支持这种索引),会在硬盘上生成类似如下的文件: hash值 存储地址 1db54bc745a1 77#45b5 4bca452157d4 76#4556,77#45cc… … hash值即为通过特定算法由指定列数据计算出来,磁盘地址即为所在数据行存储在硬盘上的地址(也有可能是其他存储地址,其实MEMORY会将hash表导入内存)。 这样,当我们进行WHERE age = 18 时,会将18通过相同的算法计算出一个hash值==>在hash表中找到对应的储存地址==>根据存储地址取得数据。 所以,每次查询时都要遍历hash表,直到找到对应的hash值,如(4),数据量大了之后,hash表也会变得庞大起来,性能下降,遍历耗时增加,如(5)。 BTREE BTREE索引就是一种将索引值按一定的算法,存入一个树形的数据结构中,相信学过数据结构的童鞋都对当初学习二叉树这种数据结构的经历记忆犹新,反正愚安我当时为了软考可是被这玩意儿好好地折腾了一番,不过那次考试好像没怎么考这个。如二叉树一样,每次查询都是从树的入口root开始,依次遍历node,获取leaf。 BTREE在MyISAM里的形式和Innodb稍有不同 在 Innodb里,有两种形态:一是primary key形态,其leaf node里存放的是数据,而且不仅存放了索引键的数据,还存放了其他字段的数据。二是secondary index,其leaf node和普通的BTREE差不多,只是还存放了指向主键的信息. 而在MyISAM里,主键和其他的并没有太大区别。不过和Innodb不太一样的地方是在MyISAM里,leaf node里存放的不是主键的信息,而是指向数据文件里的对应数据行的信息. RTREE RTREE在mysql很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有MyISAM、BDb、InnoDb、NDb、Archive几种。 相对于BTREE,RTREE的优势在于范围查找. 各种索引的使用情况 (1)对于BTREE这种Mysql默认的索引类型,具有普遍的适用性 (2)由于FULLTEXT对中文支持不是很好,在没有插件的情况下,最好不要使用。其实,一些小的博客应用,只需要在数据采集时,为其建立关键字列表,通过关键字索引,也是一个不错的方法,至少愚安我是经常这么做的。 (3)对于一些搜索引擎级别的应用来说,FULLTEXT同样不是一个好的处理方法,Mysql的全文索引建立的文件还是比较大的,而且效率不是很高,即便是使用了中文分词插件,对中文分词支持也只是一般。真要碰到这种问题,Apache的Lucene或许是你的选择。 (4)正是因为hash表在处理较小数据量时具有无可比拟的素的优势,所以hash索引很适合做缓存(内存数据库)。如mysql数据库的内存版本Memsql,使用量很广泛的缓存工具Mencached,NoSql数据库redis等,都使用了hash索引这种形式。当然,不想学习这些东西的话Mysql的MEMORY引擎也是可以满足这种需求的。 (5)至于RTREE,愚安我至今还没有使用过,它具体怎么样,我就不知道了。有RTREE使用经历的同学,到时可以交流下! 答案来源于网络

养狐狸的猫 2019-12-02 02:18:32 0 浏览量 回答数 0

回答

在mysql5.5 command line client上面看到的 +----+-------+-----------+---------------------+ | id | state | nickname  | createtime          | +----+-------+-----------+---------------------+ |  1 |     1 | 鍝堝搱鍝?   | 2014-08-12 21:56:11 | |  2 |     2 | 浣犲ソ      | 2014-08-12 22:17:14 | |  3 |     3 | MySQ      | 2014-08-12 22:33:39 | |  4 |     2 | 浣犲ソ      | 2014-08-12 22:38:12 | +----+-------+-----------+---------------------+ 在navicat上面看到的启动console看到的 +----+-------+----------+---------------------+ | id | state | nickname | createtime          | +----+-------+----------+---------------------+ |  1 |     1 | 哈哈哈   | 2014-08-12 21:56:11 | |  2 |     2 | 你好     | 2014-08-12 22:17:14 | |  3 |     3 | MySQ     | 2014-08-12 22:33:39 | |  4 |     2 | 你好     | 2014-08-12 22:38:12 | +----+-------+----------+---------------------+ 在client中语句 insert into days_user values(3,3,'MySQL支持的字符集和校对',sysdate()); > insert into days_user values(3,3,'MySQL支持的字符集和校对',sysdate());  1366 (HY000): Incorrect string value: '\xB3\xD6\xB5\xC4\xD7\xD6...' for column 'nickname' at row 1 在console正确的插入了 +----+-------+-------------------------+---------------------+ | id | state | nickname                | createtime          | +----+-------+-------------------------+---------------------+ |  1 |     1 | 哈哈哈                  | 2014-08-12 21:56:11 | |  2 |     2 | 你好                    | 2014-08-12 22:17:14 | |  3 |     3 | MySQ                    | 2014-08-12 22:33:39 | |  4 |     2 | 你好                    | 2014-08-12 22:38:12 | |  5 |     3 | MySQL支持的字符集和校对 | 2014-08-12 22:45:38 | +----+-------+-------------------------+---------------------+ mysql> SHOW VARIABLES LIKE 'collation_%'; +----------------------+-----------------+ | Variable_name        | Value           | +----------------------+-----------------+ | collation_connection | utf8_general_ci | | collation_database   | utf8_general_ci | | collation_server     | utf8_general_ci | +----------------------+-----------------+ mysql> show variables like 'character\_set\_%'; +--------------------------+--------+ | Variable_name            | Value  | +--------------------------+--------+ | character_set_client     | utf8   | | character_set_connection | utf8   | | character_set_database   | utf8   | | character_set_filesystem | binary | | character_set_results    | utf8   | | character_set_server     | utf8   | | character_set_system     | utf8   | Java中的jdbc配置: jdbc_url=jdbc:mysql://localhost:3306/mydays?useUnicode=true&characterEncoding=utf-8 还是不行哦,我的操作系统的问题? ###### utf8  && utf-8 傻傻分不清楚. ######数据库中可以选择的编码方式就是“utf8”,没有utf-8,应该都是一个意思吧,书写的方式有所差异罢了######应该是Mybatis在存储转换过程中转码的问题。###### 哦,你没错,mysql引擎默认引用latin1(iso-8859-1) ,你进行mysql命令行,选择数据库后用status命令看一下,除数据库外,其它的都应该是latin1编码, 解决方式 :使用set names 'utf-8',全部设置在utf-8编码,就不是乱码了。 其实你那里中文是没有乱码的,latin1支持所有的编码,你用HeidiSQL工具连接上你的mysql ,它能将底层的latin1转为 utf-8。 ######设置如下,还是无法正常插入中文: mysql>  SHOW VARIABLES LIKE 'character_set_%'; +--------------------------+---------------------------------------------------------+ | Variable_name            | Value                                                   | +--------------------------+---------------------------------------------------------+ | character_set_client     | utf8                                                    | | character_set_connection | utf8                                                    | | character_set_database   | utf8                                                    | | character_set_filesystem | binary                                                  | | character_set_results    | utf8                                                    | | character_set_server     | utf8                                                    | | character_set_system     | utf8                                                    | | character_sets_dir       | C:\Program Files\MySQL\MySQL Server 5.5\share\charsets\ | ######你的项目编码是什么?######utf-8###### 怀疑你的字符串并没有使用UTF8编码。 你试试在mysql交互式命令行下以utf8编码插入数据试试 ######也可以检查下页面的编码和浏览器显示用的编码######你可以试试在存入数据库前是否已经乱码,也就是页面传递时乱码没有!###### SHOW VARIABLES LIKE 'collation_%'; +----------------------+-----------------+ | Variable_name        | Value           | +----------------------+-----------------+ | collation_connection | utf8_general_ci | | collation_database   | utf8_general_ci | | collation_server     | utf8_unicode_ci | +----------------------+-----------------+ 有可能是 这个 collation_connection 的原因, 使用set collation_connection=utf8_general_ci;提示成功,查询也能查到, 在关闭了之后,再次查询,又恢复到了latin1

kun坤 2020-06-06 16:26:52 0 浏览量 回答数 0

回答

在Kubernetes集群中,apiserver的审计日志可以帮助集群管理人员记录或追溯不同用户的日常操作,是集群安全运维中重要的环节。本文旨在帮助您了解阿里云Kubernetes集群apiserver审计日志的相关配置,以及如何通过日志服务收集、分析审计日志,并根据您的需求为审计日志设置自定义的告警规则。 配置介绍 当前创建Kubernetes集群时勾选使用日志服务后,会默认开启apiserver审计功能,相关的参数配置功能如下: 说明 登录到Master节点,apiserver配置文件的目录是/etc/kubernetes/manifests/kube-apiserver.yaml。 配置 说明 audit-log-maxbackup 审计日志最大分片存储10个日志文件 audit-log-maxsize 单个审计日志最大size为100MB audit-log-path 审计日志输出路径为/var/log/kubernetes/kubernetes.audit audit-log-maxage 审计日志最多保存期为7天 audit-policy-file 审计日志配置策略文件,文件路径为:/etc/kubernetes/audit-policy.yml 登录Master节点机器,审计配置策略文件的目录是/etc/kubernetes/audit-policy.yml,内容如下: apiVersion: audit.k8s.io/v1beta1 # This is required. kind: Policy Don't generate audit events for all requests in RequestReceived stage. omitStages: - "RequestReceived" rules: # The following requests were manually identified as high-volume and low-risk, # so drop them. - level: None users: ["system:kube-proxy"] verbs: ["watch"] resources: - group: "" # core resources: ["endpoints", "services"] - level: None users: ["system:unsecured"] namespaces: ["kube-system"] verbs: ["get"] resources: - group: "" # core resources: ["configmaps"] - level: None users: ["kubelet"] # legacy kubelet identity verbs: ["get"] resources: - group: "" # core resources: ["nodes"] - level: None userGroups: ["system:nodes"] verbs: ["get"] resources: - group: "" # core resources: ["nodes"] - level: None users: - system:kube-controller-manager - system:kube-scheduler - system:serviceaccount:kube-system:endpoint-controller verbs: ["get", "update"] namespaces: ["kube-system"] resources: - group: "" # core resources: ["endpoints"] - level: None users: ["system:apiserver"] verbs: ["get"] resources: - group: "" # core resources: ["namespaces"] # Don't log these read-only URLs. - level: None nonResourceURLs: - /healthz* - /version - /swagger* # Don't log events requests. - level: None resources: - group: "" # core resources: ["events"] # Secrets, ConfigMaps, and TokenReviews can contain sensitive & binary data, # so only log at the Metadata level. - level: Metadata resources: - group: "" # core resources: ["secrets", "configmaps"] - group: authentication.k8s.io resources: ["tokenreviews"] # Get repsonses can be large; skip them. - level: Request verbs: ["get", "list", "watch"] resources: - group: "" # core - group: "admissionregistration.k8s.io" - group: "apps" - group: "authentication.k8s.io" - group: "authorization.k8s.io" - group: "autoscaling" - group: "batch" - group: "certificates.k8s.io" - group: "extensions" - group: "networking.k8s.io" - group: "policy" - group: "rbac.authorization.k8s.io" - group: "settings.k8s.io" - group: "storage.k8s.io" # Default level for known APIs - level: RequestResponse resources: - group: "" # core - group: "admissionregistration.k8s.io" - group: "apps" - group: "authentication.k8s.io" - group: "authorization.k8s.io" - group: "autoscaling" - group: "batch" - group: "certificates.k8s.io" - group: "extensions" - group: "networking.k8s.io" - group: "policy" - group: "rbac.authorization.k8s.io" - group: "settings.k8s.io" - group: "storage.k8s.io" # Default level for all other requests. - level: Metadata 说明 在收到请求后不立即记录日志,当返回体header发送后才开始记录。 对于大量冗余的kube-proxy watch请求,kubelet和system:nodes对于node的get请求,kube组件在kube-system下对于endpoint的操作,以及apiserver对于namespaces的get请求等不作审计。 对于/healthz*,/version*/swagger*等只读url不作审计。 对于可能包含敏感信息或二进制文件的secrets,configmaps,tokenreviews接口的日志等级设为metadata,该level只记录请求事件的用户、时间戳、请求资源和动作,而不包含请求体和返回体。 对于一些如authenticatioin、rbac、certificates、autoscaling、storage等敏感接口,根据读写记录相应的请求体和返回体。 查看审计报表 容器服务Kubernetes版内置了3个审计日志报表。通过报表,您可以获取以下内容: 所有用户以及系统组件对集群执行的重要操作。 操作的源地址、源地址所属区域以及分布。 各类资源的详细操作列表。 子账号操作详细列表。 重要操作(登录容器、访问保密字典、删除资源等)的详细列表。 说明 创建的集群中,若已经选择日志服务,则会自动开通审计报表相关功能。日志服务的计费详情请参见计费说明。若未开通,请参考手动开通审计报表。 请不要修改审计报表。如果您有自定义审计报表的需求,请在日志服务管理控制台创建新的报表。 您可以通过以下几种方式访问审计报表: 登录容器服务管理控制台。在集群列表的操作列表中,单击更多 > 集群审计。集群审计 登录容器服务管理控制台。在集群列表中单击集群名称,进入到集群信息页面。在左侧导航栏列表中单击集群审计。集群审计 审计报表说明 apiserver审计共3个报表。分别是:审计中心概览、资源操作概览以及资源操作详细列表。 审计中心概览 审计中心概览展示Kubernetes集群中的事件整体概览以及重要事件(公网访问、命令执行、删除资源、访问保密字典等)的详细信息。 审计报表 说明 在该报表中,默认显示一周的统计信息。您可以自定义选择统计时间范围。此外,该报表支持指定Namespace、子账号ID、状态码进行筛选。您可以选择任一一项或多项组合筛选指定范围的事件。 资源操作概览 资源操作概览展示Kubernetes集群中常见的计算资源、网络资源以及存储资源的操作统计信息。操作包括创建、更新、删除、访问。其中: 计算资源包括:Deployment、StatefulSet、CronJob、DaemonSet、Job、Pod。 网络资源包括:Service、Ingress。 存储资源包括:ConfigMap、Secret、PersistentVolumeClaim。 资源概览 说明 在该报表中,默认显示一周的统计信息。您可以自定义选择统计时间范围。此外,该报表支持指定Namespace、子账号ID进行筛选。您可以选择任一一项或多项组合筛选指定范围的事件。 若您需要查看对应资源的详细操作事件,请使用资源操作详细列表。 资源操作详细列表 该报表用于展示Kubernetes集群中某类资源的详细操作列表。您需要选择或输入指定的资源类型进行实时查询。该报表会显示:资源操作各类事件的总数、Namespace分布、成功率、时序趋势以及详细操作列表等。 资源列表 说明 若您需要查看Kubernetes中注册的CRD(CustomResourceDefinition)资源或列表中没有列举的其他资源,可以手动输入资源名的复数形式。例如CRD资源为AliyunLogConfig,则输入AliyunLogConfigs。 在该报表中,默认显示一周的统计信息。您可以自定义选择统计时间范围。此外,该报表支持指定Namespace、子账号ID、状态码进行筛选。您可以选择任一一项或多项组合筛选指定范围的事件。 查看详细日志记录 如果您有自定义查询、分析审计日志的需求,可以进入日志服务管理控制台查看详细的日志记录。 登录日志服务控制台。 选择创建集群时设置的日志Project,单击名称进入日志Project页面。 选择名称为audit-${clustered}的日志库(logstore),单击右侧的查询分析图标,选择查询分析,查看对应的审计日志。 说明 在集群创建过程中,指定的日志Project中会自动添加一个名为audit-${clustereid}的日志库。 审计日志的Logstore默认已经配置好索引。请不要修改索引,以免报表失效。 常见的审计日志搜索方式如下: 查询某一子账号的操作记录,直接输入子账号id,单击查询/分析。 查询某一资源的操作,直接输入资源名,单击查询/分析。 过滤掉系统组件的操作,输入NOT user.username: node NOT user.username: serviceaccount NOT user.username: apiserver NOT user.username: kube-scheduler NOT user.username: kube-controller-manager,单击查询/分析。 更多查询、统计方式,请参考日志服务查询分析方法。 设置告警 若您需要对某些资源的操作进行实时告警,可以通过日志服务的告警功能实现。告警方式支持短信、钉钉机器人、邮件、自定义WebHook和通知中心。详细操作方式请参考日志服务告警配置。 说明 对于审计日志的更多查询方式,可以参考审计报表中的查询语句。操作方式为:在日志服务Project详情页中,单击左侧导航栏中的仪表盘,进入指定的仪表盘(报表),展开指定分析图表右上角的折叠列表,并单击查看分析详情。详细操作方式请参考查看分析详情。 示例1:对容器执行命令时告警 某公司对于Kubernetes集群使用有严格限制,不允许用户登录容器或对容器执行命令,如果有用户执行命令时需要立即给出告警,并希望告警时能够显示用户登录的具体容器、执行的命令、操作人、事件ID、时间、操作源IP等信息。 查询语句为: verb : create and objectRef.subresource:exec and stage: ResponseStarted | SELECT auditID as "事件ID", date_format(from_unixtime(time), '%Y-%m-%d %T' ) as "操作时间", regexp_extract("requestURI", '([^?])/exec?.', 1)as "资源", regexp_extract("requestURI", '?(.)', 1)as "命令" ,"responseStatus.code" as "状态码", CASE WHEN "user.username" != 'kubernetes-admin' then "user.username" WHEN "user.username" = 'kubernetes-admin' and regexp_like("annotations.authorization.k8s.io/reason", 'RoleBinding') then regexp_extract("annotations.authorization.k8s.io/reason", ' to User "(\w+)"', 1) ELSE 'kubernetes-admin' END as "操作账号", CASE WHEN json_array_length(sourceIPs) = 1 then json_format(json_array_get(sourceIPs, 0)) ELSE sourceIPs END as "源地址" limit 100 条件表达式为:操作事件 =~ "."。 示例2:apiserver公网访问失败告警 某集群开启了公网访问,为防止恶意攻击,需要监控公网访问的次数以及失败率,若访问次数到达一定阈值(10次)且失败率高于一定阈值(50%)则立即告警,并希望告警时能够显示用户的IP所属区域、操作源IP、是否高危IP等信息。 查询语句为: * | select ip as "源地址", total as "访问次数", round(rate * 100, 2) as "失败率%", failCount as "非法访问次数", CASE when security_check_ip(ip) = 1 then 'yes' else 'no' end as "是否高危IP", ip_to_country(ip) as "国家", ip_to_province(ip) as "省", ip_to_city(ip) as "市", ip_to_provider(ip) as "运营商" from (select CASE WHEN json_array_length(sourceIPs) = 1 then json_format(json_array_get(sourceIPs, 0)) ELSE sourceIPs END as ip, count(1) as total, sum(CASE WHEN "responseStatus.code" < 400 then 0 ELSE 1 END) * 1.0 / count(1) as rate, count_if("responseStatus.code" = 403) as failCount from log group by ip limit 10000) where ip_to_domain(ip) != 'intranet' having "访问次数" > 10 and "失败率%" > 50 ORDER by "访问次数" desc limit 100 条件表达式为:源地址 =~ ".*"。 手动开通审计报表 若您还未开通审计报表,需手动开通审计报表。 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的集群 > 集群,在目标集群右侧单击管理。 在集群详情页面,单击左侧导航栏中的集群审计。 集群审计 单击开启集群审计功能,选择使用已有 Project或者创建新Project后,单击确定。 当出现如下页面时,表示集群审计功能已开启。开启审计功能 计费说明 您可以在费用账单的账单总览页面,查看计费明细,包含审计日志的费用信息。请参见费用账单。 审计日志计费方式,请参见按量付费。 支持第三方日志解决 您可以在集群Master各节点,在 /var/log/kubernetes/kubernetes.audit 路径下找到审计日志的源文件。该文件是标准的json格式,您可以在部署集群时选择不使用阿里云的日志服务,根据需要对接其他的日志解决方案,完成相关审计日志的采集和检索。

1934890530796658 2020-03-31 15:45:41 0 浏览量 回答数 0

问题

如何实时写入优化?

nicenelly 2019-12-01 21:25:42 877 浏览量 回答数 0

问题

实时写入优化

nicenelly 2019-12-01 21:11:10 1079 浏览量 回答数 0

回答

Re回4楼cyb的帖子 distinct 可以认为是group by的特例。 SELECT DISTINCT   LoginId,   SubId FROM   TB WHERE 1 ORDER BY Visit ASC LIMIT 8888, 10 这个SQL等价于: select LoginId, SubId from TB where 1 group by LoginId, SubId ORDER BY Visit ASC LIMIT 8888, 10 单纯就这条SQL而言, ORDER BY Visit ASC 是没必要的,因为select选出的字段中没有 Visit字段,建议添加组合索引( LoginId, SubId )。 假如SQL是 select LoginId,SubId,Visit from TB where 1 group by LoginId, SubId ORDER BY Visit ASC LIMIT 8888, 10 这里可以建议组合索引( LoginId, SubId) 或者( LoginId, SubId,Visit) 将 Visit字段添加到索引中,仍旧避免不了排序,上面SQL的执行过程是: 1. select LoginId,SubId,Visit from TB where 1 group by LoginId, SubId 2. ORDER BY Visit ASC LIMIT 8888, 10 第一步中的group by (或者distinct)可以利用到索引( LoginId, SubId )避免临时表,排序 下面是测试案例: mysql> show create table tb\G *************************** 1. row ***************************        Table: tb Create Table: CREATE TABLE `tb` (   `id` int(11) DEFAULT NULL,   `LoginId` int(11) DEFAULT NULL,   `SubId` int(11) DEFAULT NULL,   `vist` int(11) DEFAULT NULL,   KEY `idx1` (`id`),   KEY `login_subId` (`LoginId`,`SubId`),   KEY `login_subId_vist` (`LoginId`,`SubId`,`vist`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 1 row in set (0.00 sec) mysql> explain select LoginId, SubId, vist from tb where 1 group by LoginId,SubId ; +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------+ | id | select_type | table | type  | possible_keys                | key         | key_len | ref  | rows | Extra | +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------+ |  1 | SIMPLE      | tb    | index | login_subId,login_subId_vist | login_subId | 10      | NULL |    9 | NULL  | +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------+ 1 row in set (0.00 sec) 第二步中将步骤1中的结果集按照 Visit 字段排序,这一步的排序不可避免。 上面提到了将visit字段加入到组合索引中,是为了构建覆盖索引。避免返回到数据行去查询。 对于您提到的问题, 排序方式有多种,Visit 、ID、Count等,是不是有一种排序就要建一个“覆盖索引”? distinct/group by的优化,关键是要利用索引,避免distinct/group by时的创建临时表,排序。 将order by的字段加入到组合索引中,目的是为了直接从二级索引字段获取到结果集,避免再去查数据行。 加了覆盖索引,索引字段变长,查询性能变好,同时也会导致占用空间、插入性能变慢。 所以是否去创建覆盖索引,还是需要依旧您的具体业务而定的。 还需要单列给Visit 、ID、Count、SubId、LoginId建索引吗? 不需要给单列 Visit 、ID、Count、SubId、LoginId建索引,这里在order by 的字段上建立索引,还是不能避免排序。 ------------------------- Re回5楼cyb的帖子 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: select  *  from t where sellerid=100 limit 100000,20 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 这种优化的根本出发点,是减少在数据页中的扫描量。 覆盖索引,也是一种优化思路,出发点就是直接从二级索引中直接获取查询结果。 您也可以将您的业务SQL发一下,一起来看看如何优化。 ------------------------- 回15楼cyb的帖子 T_Query 是一个视图对吧? 可否将T_Query的建表语句发一下呢? ------------------------- Re回15楼cyb的帖子 SELECT DISTINCT   LoginId,   SubId FROM   T_Query WHERE 1 ORDER BY fenshu DESC LIMIT 61630, 10 这条SQL从实现的功能而言,其实没必要加ORDER BY fenshu DESC 的。 distinct只能返回它的目标字段,而无法返回其它字段。 所以在SELECT DISTINCT LoginId, SubId FROM T_Query中取出的是 LoginId,SubId不重复的行。也就是说,必须LoginId和SubId都相同才会被排除。 做个测试: mysql> select * from tb; +------+---------+-------+------+ | id   | LoginId | SubId | vist | +------+---------+-------+------+ |    1 |     123 |    21 |   78 | |    2 |      43 |    71 |   78 | |    3 |      43 |    21 |   78 | |    2 |      43 |    71 |   78 | |    3 |      43 |    21 |   78 | |    2 |      43 |    71 |   78 | |    5 |      73 |    21 |   78 | |    2 |      55 |    67 |   78 | |    1 |      98 |    21 |   78 | +------+---------+-------+------+ 9 rows in set (0.01 sec) mysql> select distinct LoginId,SubId from tb ; +---------+-------+ | LoginId | SubId | +---------+-------+ |      43 |    21 | |      43 |    71 | |      55 |    67 | |      73 |    21 | |      98 |    21 | |     123 |    21 | +---------+-------+ 6 rows in set (0.00 sec) mysql> select distinct LoginId,SubId from tb where 1 order by vist; +---------+-------+ | LoginId | SubId | +---------+-------+ |      43 |    21 | |      43 |    71 | |      55 |    67 | |      73 |    21 | |      98 |    21 | |     123 |    21 | +---------+-------+ 6 rows in set (0.00 sec) 这里如果建了(LoginId,SubId)即可避免distinct的创建临时表,避免排序。 mysql> explain select distinct LoginId,SubId from tb; +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------------+ | id | select_type | table | type  | possible_keys                | key         | key_len | ref  | rows | Extra       | +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------------+ |  1 | SIMPLE      | tb    | index | login_subId,login_subId_vist | login_subId | 10      | NULL |    9 | Using index | +----+-------------+-------+-------+------------------------------+-------------+---------+------+------+-------------+ 1 row in set (0.00 sec) 所以,对于您给出的SQL,我的建议是改写SQL为: SELECT DISTINCT   LoginId,   SubId FROM   T_Query LIMIT 61630, 10 并添加索引( LoginId, SubId),这里一方面可以利用到索引避免临时表、排序;另一方面其实也是覆盖索引。 如果您发现去掉ORDER BY fenshu DESC 不符合您的业务需求,那么就需要考虑一下distinct的用法是否正确? select出来的结果集是否是您真实需要的。 另外需要提到一点: 您发给我的这张表,索引用法有点问题,建了很多不必要的索引。 假如建了(A),(A,B),(A,B,C)三个索引,其实(A),(A,B)都是不需要的。 ------------------------- Re回20楼华夏一剑的帖子 在您给的例子中,select id, title from tb_news where title like '%mal%'; 是可以走上索引的,并且是覆盖索引。 innodb表的二级索引上存储了主键值,上面的SQL语句只需要查询id(主键字段)和title,所以扫描二级索引字段就可以获取到结果,不要再返回主键索引读取数据了。 mysql> explain select id, title from tb_news where title like '%mal%'; +----+-------------+---------+-------+---------------+---------------+---------+------+------+--------------------------+ | id | select_type | table   | type  | possible_keys | key           | key_len | ref  | rows | Extra                    | +----+-------------+---------+-------+---------------+---------------+---------+------+------+--------------------------+ |  1 | SIMPLE      | tb_news | index | NULL          | tb_news_title | 203     | NULL |    5 | Using where; Using index | +----+-------------+---------+-------+---------------+---------------+---------+------+------+--------------------------+ 1 row in set (0.00 sec) 而类似这种,select * from tb_news where title like '%mal%';会走全表扫描。 mysql> explain select * from tb_news where title like '%mal%'; +----+-------------+---------+------+---------------+------+---------+------+------+-------------+ | id | select_type | table   | type | possible_keys | key  | key_len | ref  | rows | Extra       | +----+-------------+---------+------+---------------+------+---------+------+------+-------------+ |  1 | SIMPLE      | tb_news | ALL  | NULL          | NULL | NULL    | NULL |    5 | Using where | +----+-------------+---------+------+---------------+------+---------+------+------+-------------+ 1 row in set (0.00 sec) 通过覆盖索引可以获得性能上的一定优化,但是在数据量特别大,请求频繁的业务场景下不要在数据库进行模糊查询;   非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障; 可以使用MySQL自带的全文检索,或者一些开源的搜索引擎技术,比如sphinx.  

俞月 2019-12-02 02:09:46 0 浏览量 回答数 0

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/

佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

问题

程序员报错QA大分享(1)

问问小秘 2020-06-18 15:46:14 8 浏览量 回答数 1

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站