• 关于

    中小企业小程序注册api地址

    的搜索结果

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

回答

事件请求场景 定制图片 网店店家进行商品图片维护时,需要根据商品陈列位置,将图片动态切割成不同尺寸,或者打上不同水印。当店家把图片上传到对象存储 OSS上,会通过函数计算上定制的trigger来触发函数计算。根据计算规则,生成不同尺寸的图片,满足在线商品陈列需求,整个过程无需再搭建额外服务器,也无需网站美工干预。 物联网中的低频请求 物联网行业中,物联网设备传输数据量小,且往往是以固定时间间隔进行数据传输,因此经常涉及低频请求场景。例如:物联网应用程序每分钟仅运行一次,每次运行 50ms,这意味着CPU的使用率仅为 0.1%/小时,或者说有 1000 个相同的应用可以共享计算资源。而Serverless架构下,用户可以购买每分钟 100ms 的资源来满足计算需求,既能有效解决效率问题,也能降低使用成本。 定制事件 用户注册时发邮件验证邮箱地址,同样可以通过定制的事件来触发后续的注册流程,而无需再配置额外的应用无服务器来处理后续的请求。 固定时间触发 事件触发固定时间触发,例如在夜间或者服务空闲时间来处理繁忙时候的交易数据,或者运行批量数据,来生成数据报表,通过Serverless方式,不用再额外购买利用率并不高的处理资源。 流量突发场景 弹性扩展应对突发流量 移动互联网应用经常会面对突发流量场景。例如:移动应用的通常流量情况是 QPS 20,但每隔 5 分钟会有一个持续 10s 的 QPS 200 流量(10 倍于通常流量)。传统架构下,企业必须扩展 QPS 200 的硬件能力来应对业务高峰,即使高峰时间仅占整个运行时间的4%。 在Serverless架构下,您可以利用弹性扩展特性,快速构建新的计算能力来满足当前需求,当业务高峰后,资源能够自动释放,有效节省成本。 转码和流量扩容 视频直播某次专场活动,由于无法预估会有多少点播的观众视频接入,把转码和流量扩容这部分内容通过Function来处理,无需考虑并发和流量扩容。 处理大数据场景 由于安全审计问题,您需要从OSS(多个地域)过去一年的数据(1 个小时一个文件)中找出特定关键字访问的日志,同时做聚合运算(计算出总值)。如果使用阿里云函数计算,您将高峰期每 2 小时的访问日志,或者低谷期每 4 小时的访问日志交给一个计算函数处理,并将处理结果存到RDS中。使用一个函数分派数据给另一个函数,使其执行成千上万个相同的实例。 这样会同时运行近千个计算函数(24 x 365 / 10),在不到一分钟的时间内完成整个工作。同样的事情交给ECS+计算脚本来做计算,单单为这些instance配置网络就让人头疼(不同地域无法走内网下载OSS文件):instance的数量可能已经超出了子网中剩余IP地址的数量(比如,您的VPC使用了24位掩码)。 下面结合阿里云的函数计算产品来讲解各个应用场景中地架构以及如何解决场景中的痛点。阿里云的函数计算是基于Serverless这种架构实现的一个全托管产品,用户只需要上传核心代码到函数计算,就可以通过事件源或者SDK&API来运行代码。函数计算会准备好运行环境,并根据请求峰值来动态扩容运行环境。函数计算是按照执行时间来计费,请求处理完成后,计费停止,对于有业务请求有明显高峰和低谷的应用来说,相对节省成本。

剑曼红尘 2020-03-23 15:07:05 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

回答

您可以通过阿里云RDS管理控制台或API创建RDS实例。本文介绍如何通过控制台创建RDS MySQL实例。 其他引擎创建实例请参见: 创建RDS SQL Server实例 创建RDS PostgreSQL实例 创建RDS PPAS实例 创建RDS MariaDB实例 除了新版本的创建实例页面,您也可以切换回旧版创建实例页面。操作详情请参见: 创建RDS实例(新版) 创建RDS实例(旧版) 优惠活动 首购折扣价:首次购买RDS MySQL享受折扣价。详情请参见优惠活动。 计费说明 关于实例计费说明,请参见计费方式。 前提条件 已注册阿里云账号。具体操作请参见注册阿里云账号。 若您要创建按量付费的实例,请确保您的阿里云账号的余额大于等于100元。 注意事项 包年包月实例无法转为按量付费实例。 按量付费实例可以转为包年包月实例,请参见按量付费转包年包月。 同一个主账号,最多可以创建30个按量付费的RDS实例。如需提高此限额,请提交工单申请。 创建RDS实例(新版) 进入RDS实例创建页面。 说明 您也可以在当前创建RDS实例页面上方单击返回旧版切换到旧版创建RDS实例页面。 设置以下参数。 类别 说明 计费方式 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 地域 实例所在的地域,即实例所在的地理位置。 购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 类型 数据库引擎的类型和版本,这里选择MySQL。 当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。 说明 不同地域和数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。ESSD云盘分为如下三类: ESSD云盘:PL1性能级别的ESSD云盘。 ESSD PL2云盘:相比PL1,PL2性能级别的ESSD云盘大约可提升2倍IOPS和吞吐量。 ESSD PL3云盘:相比PL1,PL3性能级别的ESSD云盘最高可提升20倍IOPS、11倍吞吐量,适合对极限并发I/O性能要求极高、读写时延极稳定的业务场景。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 更多信息,请参见存储类型。 可用区 可用区是地域中的一个独立物理区域,主节点可用区指主实例所在可用区,备节点可用区指备实例所在可用区。 您可以设置实例为单可用区部署或多可用区部署: 单可用区部署指主节点可用区和备节点可用区都处于相同可用区。 多可用区部署指主节点可用区和备节点可用区处于不同可用区,此时您只需要选择主节点可用区,系统会自动选择备节点可用区。 相比单可用区部署,多可用区部署能提供可用区级别的容灾,建议您使用多可用区部署。 可用区 实例规格 入门级:通用型的实例规格,独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 企业级:独享或独占型的实例规格。独享型指独享被分配的CPU、内存、存储和I/O资源。独占型是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 说明 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 存储空间 存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。调整存储空间时最小单位为5GB。 说明 部分本地SSD盘的存储空间大小与实例规格绑定,ESSD/SSD云盘不受此限制。详情请参见主实例规格列表。 单击下一步:网络和资源组。 设置以下参数。 类别 说明 网络类型 经典网络:传统的网络类型。 专有网络:也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。选择专有网络时您需要选择对应的VPC和主节点交换机。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致(如果选择专有网络,还需要保证VPC一致),否则它们无法通过内网互通。 存储引擎 设置实例的默认存储引擎。当前仅MySQL 8.0高可用版(本地SSD盘)实例支持此选项。 关于阿里自研的X-Engine引擎详情请参见X-Engine简介。 说明 X-Engine兼容InnoDB,而且拥有更好的性能表现,建议您使用X-Engine作为默认存储引擎。 参数模板 设置实例参数模板。当前仅高可用版(本地SSD盘)实例支持此选项。 说明 您可以选择系统参数模板或自定义参数模板,详情请参见使用参数模板。 时区 设置实例时区。当前仅本地SSD盘实例支持此选项。 表名大小写 设置实例表名是否区分大小写。当本地数据库区分大小时,您可以选择区分大小写,便于您迁移数据。当前仅本地SSD盘实例支持此选项。 资源组 实例所属的资源组。 单击下一步:确认订单。 确认参数配置,选择购买量和购买时长(仅包年包月实例),勾选服务协议,单击去支付完成支付。 创建RDS实例(旧版) 进入旧版RDS实例创建页面。 选择计费方式。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 设置以下参数。 参数 说明 地域 实例所在的地理位置。购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 资源组 实例所属的资源组。 数据库类型 即数据库引擎的类型,这里选择MySQL。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 版本 指MySQL的版本。当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域所支持的版本不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。仅4个地域提供三节点企业版实例:华东1、华东2、华南1、华北2。 说明 不同数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 说明 SSD云盘支持云盘加密,能够最大限度保护您的数据安全,您的业务和应用程序无需做额外的改动。详情请参见云盘加密。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。 更多信息,请参见存储类型。 密钥 云盘加密所使用的的密钥。密钥的创建请参见管理密钥。 可用区 可用区是地域中的一个独立物理区域,不同可用区之间没有实质性区别。您可以选择将RDS实例的主备节点创建在同一可用区或不同可用区。 相比单可用区,多可用区能提供可用区级别的容灾。 网络类型 经典网络:传统的网络类型。 专有网络(推荐):也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致,否则它们无法通过内网互通。 规格 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 RDS实例有以下规格族: 通用型:独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 独享型:独享被分配的CPU、内存、存储和I/O资源。 独占物理机型:是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 例如,8核32GB是通用型实例规格,8核32GB(独享套餐)是独享型实例规格,30核220GB(独占主机)是独占物理机型实例规格。 存储空间 该存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。 设置购买时长(仅针对包年包月实例)和实例数量,然后单击右侧的立即购买。 说明 购买包年包月实例时,可以勾选自动续费,系统将根据您的购买时长进行自动续费。例如,您购买3个月的实例并勾选自动续费,则每次自动续费时会缴纳3个月的费用。 对于包年包月实例,您也可以单击加入购物车将实例加入到购物车中,最后单击购物车进行结算。 在订单确认页面,勾选相关协议,根据提示完成支付。 下一步 在控制台左上角,选择实例所在的地域即可查看到刚刚创建的实例。选择地域 创建实例后,您需要设置白名单和创建账号,如果是通过外网连接,还需要申请外网地址。然后就可以连接实例。 如果连接实例失败,请参见解决无法连接实例问题。 常见问题 为什么创建实例后无反应,实例列表也看不到创建中的实例? 看不到创建中的实例可能有如下两个原因: 地域错误 可能您所在地域和您创建实例时选择的地域不一致。您可以在页面左上角切换地域。 选择地域 可用区内资源不足 由于可用区资源是动态分配的,可能您下单后可用区内资源不足,所以会创建失败,建议您更换可用区重试。创建失败您可以在订单列表里看到退款。 如何授权子账号管理RDS实例? 答:请参见云数据库 RDS 授权。 相关API API 描述 CreateDBInstance 创建RDS实例。 操作视频 RDS实例创建

游客yl2rjx5yxwcam 2020-03-09 10:46:09 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站