• 关于

    本地小程序运行开发优势

    的搜索结果

回答

一 系统介绍 Android 是Google开发的基于Linux平台的、开源的、智能手机操作系统。Android包括操作系统、中间件和应用程序,由于源代码开放,Android可以被移植到不同的硬件平台上。 围绕在Google的Android系统中,形成了移植开发和上层应用程序开发两个不同的开发方面。手机厂商从事移植开发工作,上层的应用程序开发可以由任何单位和个人完成,开发的过程可以基于真实的硬件系统,还可以基于仿真器环境。 作为一个手机平台,Android在技术上的优势主要有以下几点: - 全开放智能手机平台 - 多硬件平台的支持 - 使用众多的标准化技术 - 核心技术完整,统一 - 完善的SDK和文档 - 完善的辅助开发工具 Android的开发者可以在完备的开发环境中进行开发,Android的官方网站也提供了丰富的文档、资料。这样有利于Android系统的开发和运行在一个良好的生态环境中。 https://developer.android.com/about安卓开发者官方网站 从宏观的角度来看,Android是一个开放的软件系统,它包含了众多的源代码。从下至上,Android系统分成4个层次: 第1层次:Linux操作系统及驱动; 第2层次:本地代码(C/C++)框架; 第3层次:Java框架; 第4层次:Java应用程序。 Android系统的架构如图所示: 由于Android系统需要支持Java代码的运行,这部分内容是Android的运行环境(Runtime),由虚拟机和Java基本类组成。 对于Android应用程序的开发,主要关注第3层次和第4层次之间的接口。 二 学习路线 基础学习——JavaSE: 基础学习扩展——JavaEE: 基础学习扩展——Linux基础: Android开发学习——基础理论:系统架构分析: Android系统从底向上一共分了4层,每一层都把底层实现封装,并暴露调用接口给上一层。 Linux内核(Linux Kernel) Android运行在linux kernel 2.6之上,但是把linux内受GNU协议约束的部分做了取代,这样在Android的程序可以用于商业目的。 Linux 内核是硬件和软件层之间的抽象层。 中间件 中间件包括两部分: 核心库和运行时(libraries & Android runtime) 核心库包括,SurfaceManager 显示系统管理库,负责把2D或3D内容显示到屏幕;Media Framework 媒体库,负责支持图像,支持多种视频和音频的录制和回放;SQlite 数据库,一个功能强大的轻量级嵌入式关系数据库;WebKit 浏览器引擎等。 Dalvik虚拟机: 区别于Java虚拟机的是,每一个Android 应用程序都在它自己的进程中运行,都有一个属于自己的Dalvik 虚拟机,这一点可以让系统在运行时可以达到优化,程序间的影响大大降低。Dalvik虚拟机并非运行Java字节码,而是运行自己的字节码。 应用程序框架(Application Framework) 丰富而又可扩展性的视图(Views),可以用来构建应用程序, 它包括列表(lists),网格(grids), 文本框(text boxes),按钮( buttons), 可嵌入的web 浏览器。内容提供者(Content Providers)使得应用程序可以访问另一个应用程序的数据(如联系人数据库), 或者共享它们自己的数据。资源管理器(Resource Manager)提供非代码资源的访问,如本地字符串,图形,和布局文件( layoutfiles )。通知管理器(Notification Manager) 使得应用程序可以在状态栏中显示自定义的提示信息。活动管理器( Activity Manager) 用来管理应用程序生命周期并提供常用的导航回退功能。 三 基础知识 掌握java部分之后,可以使用开发工具进入android世界 您可以使用 Kotlin、Java 和 C++ 语言编写 Android 应用。Android SDK 工具会将您的代码连同任何数据和资源文件编译成一个 APK(Android 软件包),即带有 .apk 后缀的归档文件。一个 APK 文件包含 Android 应用的所有内容,它也是 Android 设备用来安装应用的文件。 每个 Android 应用都处于各自的安全沙盒中,并受以下 Android 安全功能的保护: • Android 操作系统是一种多用户 Linux 系统,其中的每个应用都是一个不同的用户; • 默认情况下,系统会为每个应用分配一个唯一的 Linux 用户 ID(该 ID 仅由系统使用,应用并不知晓)。系统会为应用中的所有文件设置权限,使得只有分配给该应用的用户 ID 才能访问这些文件; • 每个进程都拥有自己的虚拟机 (VM),因此应用代码独立于其他应用而运行。 • 默认情况下,每个应用都在其自己的 Linux 进程内运行。Android 系统会在需要执行任何应用组件时启动该进程,然后当不再需要该进程或系统必须为其他应用恢复内存时,其便会关闭该进程。 Android 系统实现了最小权限原则。换言之,默认情况下,每个应用只能访问执行其工作所需的组件,而不能访问其他组件。这样便能创建非常安全的环境,在此环境中,应用无法访问其未获得权限的系统部分。不过,应用仍可通过一些途径与其他应用共享数据以及访问系统服务: • 可以安排两个应用共享同一 Linux 用户 ID,在此情况下,二者便能访问彼此的文件。为节省系统资源,也可安排拥有相同用户 ID 的应用在同一 Linux 进程中运行,并共享同一 VM。应用还必须使用相同的证书进行签名。 • 应用可以请求访问设备数据(如用户的联系人、短信消息、可装载存储装置(SD 卡)、相机、蓝牙等)的权限。用户必须明确授予这些权限。如需了解详细信息,请参阅使用系统权限。 本文档的其余部分将介绍以下概念: • 用于定义应用的核心框架组件 • 用来声明组件和应用必需设备功能的清单文件。 • 与应用代码分离并允许应用针对各种设备配置适当优化其行为的资源。 应用组件 应用组件是 Android 应用的基本构建块。每个组件都是一个入口点,系统或用户可通过该入口点进入您的应用。有些组件会依赖于其他组件。 共有四种不同的应用组件类型: • Activity • 服务 • 广播接收器 • 内容提供程序 每种类型都有不同的用途和生命周期,后者会定义如何创建和销毁组件。以下部分将介绍应用组件的四种类型。 Activity Activity 是与用户交互的入口点。它表示拥有界面的单个屏幕。例如,电子邮件应用可能有一个显示新电子邮件列表的 Activity、一个用于撰写电子邮件的 Activity 以及一个用于阅读电子邮件的 Activity。尽管这些 Activity 通过协作在电子邮件应用中形成一种紧密结合的用户体验,但每个 Activity 都独立于其他 Activity 而存在。因此,其他应用可以启动其中任何一个 Activity(如果电子邮件应用允许)。例如,相机应用可以启动电子邮件应用内用于撰写新电子邮件的 Activity,以便用户共享图片。Activity 有助于完成系统和应用程序之间的以下重要交互: • 追踪用户当前关心的内容(屏幕上显示的内容),以确保系统继续运行托管 Activity 的进程。 • 了解先前使用的进程包含用户可能返回的内容(已停止的 Activity),从而更优先保留这些进程。 • 帮助应用处理终止其进程的情况,以便用户可以返回已恢复其先前状态的 Activity。 • 提供一种途径,让应用实现彼此之间的用户流,并让系统协调这些用户流。(此处最经典的示例是共享。) 您需将 Activity 作为 Activity 类的子类来实现。如需了解有关 Activity 类的更多信息,请参阅 Activity 开发者指南。 服务 服务是一个通用入口点,用于因各种原因使应用在后台保持运行状态。它是一种在后台运行的组件,用于执行长时间运行的操作或为远程进程执行作业。服务不提供界面。例如,当用户使用其他应用时,服务可能会在后台播放音乐或通过网络获取数据,但这不会阻断用户与 Activity 的交互。诸如 Activity 等其他组件可以启动服务,使该服务运行或绑定到该服务,以便与其进行交互。事实上,有两种截然不同的语义服务可以告知系统如何管理应用:已启动服务会告知系统使其运行至工作完毕。此类工作可以是在后台同步一些数据,或者在用户离开应用后继续播放音乐。在后台同步数据或播放音乐也代表了两种不同类型的已启动服务,而这些服务可以修改系统处理它们的方式: • 音乐播放是用户可直接感知的服务,因此,应用会向用户发送通知,表明其希望成为前台,从而告诉系统此消息;在此情况下,系统明白它应尽全力维持该服务进程运行,因为进程消失会令用户感到不快。 • 通常,用户不会意识到常规后台服务正处于运行状态,因此系统可以更自由地管理其进程。如果系统需要使用 RAM 来处理用户更迫切关注的内容,则其可能允许终止服务(然后在稍后的某个时刻重启服务)。 绑定服务之所以能运行,原因是某些其他应用(或系统)已表示希望使用该服务。从根本上讲,这是为另一个进程提供 API 的服务。因此,系统会知晓这些进程之间存在依赖关系,所以如果进程 A 绑定到进程 B 中的服务,系统便知道自己需使进程 B(及其服务)为进程 A 保持运行状态。此外,如果进程 A 是用户关心的内容,系统随即也知道将进程 B 视为用户关心的内容。由于存在灵活性(无论好坏),服务已成为非常有用的构建块,并且可实现各种高级系统概念。动态壁纸、通知侦听器、屏幕保护程序、输入方法、无障碍功能服务以及众多其他核心系统功能均可构建为在其运行时由应用实现、系统绑定的服务。 您需将服务作为 Service 的子类来实现。如需了解有关 Service 类的更多信息,请参阅服务开发者指南。 注意:如果您的应用面向 Android 5.0(API 级别 21)或更高版本,请使用 JobScheduler 类来调度操作。JobScheduler 的优势在于,它能通过优化作业调度来降低功耗,以及使用 Doze API,从而达到省电目的。如需了解有关使用此类的更多信息,请参阅 JobScheduler 参考文档。 广播接收器 借助广播接收器组件,系统能够在常规用户流之外向应用传递事件,从而允许应用响应系统范围内的广播通知。由于广播接收器是另一个明确定义的应用入口,因此系统甚至可以向当前未运行的应用传递广播。例如,应用可通过调度提醒来发布通知,以告知用户即将发生的事件。而且,通过将该提醒传递给应用的广播接收器,应用在提醒响起之前即无需继续运行。 许多广播均由系统发起,例如,通知屏幕已关闭、电池电量不足或已拍摄照片的广播。应用也可发起广播,例如,通知其他应用某些数据已下载至设备,并且可供其使用。尽管广播接收器不会显示界面,但其可以创建状态栏通知,在发生广播事件时提醒用户。但广播接收器更常见的用途只是作为通向其他组件的通道,旨在执行极少量的工作。例如,它可能会根据带 JobScheduler 的事件调度 JobService 来执行某项工作 广播接收器作为 BroadcastReceiver 的子类实现,并且每条广播都作为 Intent 对象进行传递。如需了解详细信息,请参阅 BroadcastReceiver 类。 内容提供程序 内容提供程序管理一组共享的应用数据,您可以将这些数据存储在文件系统、SQLite 数据库、网络中或者您的应用可访问的任何其他持久化存储位置。其他应用可通过内容提供程序查询或修改数据(如果内容提供程序允许)。例如,Android 系统可提供管理用户联系人信息的内容提供程序。 因此,任何拥有适当权限的应用均可查询内容提供程序(如 ContactsContract.Data),以读取和写入特定人员的相关信息。我们很容易将内容提供程序看作数据库上的抽象,因为其内置的大量 API 和支持时常适用于这一情况。但从系统设计的角度看,二者的核心目的不同。对系统而言,内容提供程序是应用的入口点,用于发布由 URI 架构识别的已命名数据项。因此,应用可以决定如何将其包含的数据映射到 URI 命名空间,进而将这些 URI 分发给其他实体。反之,这些实体也可使用分发的 URI 来访问数据。在管理应用的过程中,系统可以执行以下特殊操作: • 分配 URI 无需应用保持运行状态,因此 URI 可在其所属的应用退出后继续保留。当系统必须从相应的 URI 检索应用数据时,系统只需确保所属应用仍处于运行状态。 • 这些 URI 还会提供重要的细粒度安全模型。例如,应用可将其所拥有图像的 URI 放到剪贴板上,但将其内容提供程序锁定,以便其他应用程序无法随意访问它。当第二个应用尝试访问剪贴板上的 URI 时,系统可允许该应用通过临时的 URI 授权来访问数据,这样便只能访问 URI 后面的数据,而非第二个应用中的其他任何内容。 内容提供程序也适用于读取和写入您的应用不共享的私有数据。 内容提供程序作为 ContentProvider 的子类实现,并且其必须实现一组标准 API,以便其他应用能够执行事务。如需了解详细信息,请参阅内容提供程序开发者指南。 Android 系统设计的独特之处在于,任何应用都可启动其他应用的组件。例如,当您想让用户使用设备相机拍摄照片时,另一个应用可能也可执行该操作,因而您的应用便可使用该应用,而非自行产生一个 Activity 来拍摄照片。您无需加入甚至链接到该相机应用的代码。只需启动拍摄照片的相机应用中的 Activity 即可。完成拍摄时,系统甚至会将照片返回您的应用,以便您使用。对用户而言,这就如同相机是您应用的一部分。 当系统启动某个组件时,它会启动该应用的进程(如果尚未运行),并实例化该组件所需的类。例如,如果您的应用启动相机应用中拍摄照片的 Activity,则该 Activity 会在属于相机应用的进程(而非您的应用进程)中运行。因此,与大多数其他系统上的应用不同,Android 应用并没有单个入口点(即没有 main() 函数)。 由于系统在单独的进程中运行每个应用,且其文件权限会限制对其他应用的访问,因此您的应用无法直接启动其他应用中的组件,但 Android 系统可以。如要启动其他应用中的组件,请向系统传递一条消息,说明启动特定组件的 Intent。系统随后便会为您启动该组件。 启动组件 在四种组件类型中,有三种(Activity、服务和广播接收器)均通过异步消息 Intent 进行启动。Intent 会在运行时对各个组件进行互相绑定。您可以将 Intent 视为从其他组件(无论该组件是属于您的应用还是其他应用)请求操作的信使。 您需使用 Intent 对象创建 Intent,该对象通过定义消息来启动特定组件(显式 Intent)或特定的组件类型(隐式 Intent)。 对于 Activity 和服务,Intent 会定义要执行的操作(例如,查看或发送某内容),并且可指定待操作数据的 URI,以及正在启动的组件可能需要了解的信息。例如,Intent 可能会传达对 Activity 的请求,以便显示图像或打开网页。在某些情况下,您可以通过启动 Activity 来接收结果,这样 Activity 还会返回 Intent 中的结果。例如,您可以发出一个 Intent,让用户选取某位联系人并将其返回给您。返回 Intent 包含指向所选联系人的 URI。 对于广播接收器,Intent 只会定义待广播的通知。例如,指示设备电池电量不足的广播只包含指示“电池电量不足”的已知操作字符串。 与 Activity、服务和广播接收器不同,内容提供程序并非由 Intent 启动。相反,它们会在成为 ContentResolver 的请求目标时启动。内容解析程序会通过内容提供程序处理所有直接事务,因此通过提供程序执行事务的组件便无需执行事务,而是改为在 ContentResolver 对象上调用方法。这会在内容提供程序与请求信息的组件之间留出一个抽象层(以确保安全)。 每种组件都有不同的启动方法: • 如要启动 Activity,您可以向 startActivity() 或 startActivityForResult() 传递 Intent(当您想让 Activity 返回结果时),或者为其安排新任务。 • 在 Android 5.0(API 级别 21)及更高版本中,您可以使用 JobScheduler 类来调度操作。对于早期 Android 版本,您可以通过向 startService() 传递 Intent 来启动服务(或对执行中的服务下达新指令)。您也可通过向将 bindService() 传递 Intent 来绑定到该服务。 • 您可以通过向 sendBroadcast()、sendOrderedBroadcast() 或 sendStickyBroadcast() 等方法传递 Intent 来发起广播。 • 您可以通过在 ContentResolver 上调用 query(),对内容提供程序执行查询。 如需了解有关 Intent 用法的详细信息,请参阅 Intent 和 Intent 过滤器文档。以下文档将为您详细介绍如何启动特定组件:Activity、服务、BroadcastReceiver 和内容提供程序。
问问小秘 2020-03-03 09:47:38 0 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。
有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

问题

使用Docker容器的十大误区

​本文来源:Ghostcloud原创     对于用户来说,可能一开始在不了解的情况下会对容器报以拒绝的态度,但是在尝到容器的甜头、体验到它的强大性能之后,相信大家最终是无...
ghostcloud 2019-12-01 21:10:44 7758 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

100+款试用云产品,最长免费试用12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】大数据技术、大数据计算五十问第一期

我们为大家为大家准备了【精品问答】大数据五十问第一期,大数据时代,大家需要更加了解大数据,以下是小秘整理的大数据五十问: 大数据 考研or自学? 【大咖问答】对话《深入浅出 Nod...
问问小秘 2019-12-01 21:51:57 100 浏览量 回答数 1

回答

一 容器 在学习k8s前,首先要了解和学习容器概念和工作原理。 什么是容器? 容器是一种轻量级、可移植、自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行。开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机、物理服务器或公有云主机上运行。 容器的优势 容器使软件具备了超强的可移植能力。 对于开发人员 – Build Once, Run Anywhere 容器意味着环境隔离和可重复性。开发人员只需为应用创建一次运行环境,然后打包成容器便可在其他机器上运行。另外,容器环境与所在的 Host 环境是隔离的,就像虚拟机一样,但更快更简单。 对于运维人员 – Configure Once, Run Anything 只需要配置好标准的 runtime 环境,服务器就可以运行任何容器。这使得运维人员的工作变得更高效,一致和可重复。容器消除了开发、测试、生产环境的不一致性。 Docker概念 “Docker” 一词指代了多个概念,包括开源社区项目、开源项目使用的工具、主导支持此类项目的公司 Docker Inc. 以及该公司官方支持的工具。技术产品和公司使用同一名称,的确让人有点困惑。 我们来简单说明一下: IT 软件中所说的 “Docker” ,是指容器化技术,用于支持创建和使用容器。 开源 Docker 社区致力于改进这类技术,并免费提供给所有用户,使之获益。 Docker Inc. 公司凭借 Docker 社区产品起家,它主要负责提升社区版本的安全性,并将技术进步与广大技术社区分享。此外,它还专门对这些技术产品进行完善和安全固化,以服务于企业客户。 借助 Docker,您可将容器当做轻巧、模块化的虚拟机使用。同时,您还将获得高度的灵活性,从而实现对容器的高效创建、部署及复制,并能将其从一个环境顺利迁移至另一个环境,从而有助于您针对云来优化您的应用。 Docker有三大核心概念: 镜像(Image)是一个特殊的文件系统,提供容器运行时所需的程序、库、配置等,构建后不会改变 容器(Container)实质是进程,拥有自己独立的命名空间。 仓库(Repository)一个仓库可以包含多个标签(Tag),每个标签对应一个镜像 容器工作原理 Docker 技术使用 Linux 内核和内核功能(例如 Cgroups 和 namespaces)来分隔进程,以便各进程相互独立运行。这种独立性正是采用容器的目的所在;它可以独立运行多种进程、多个应用,更加充分地发挥基础设施的作用,同时保持各个独立系统的安全性。 二 Kubernetes入门知识指南 Kubernets的知识都可以在官方文档查询,网址如下: https://kubernetes.io/zh/docs/home/ Kubernetes基础知识 Kubernetes是什么? Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。 为什么需要 Kubernetes 容器是打包和运行应用程序的好方式。在生产环境中,您需要管理运行应用程序的容器,并确保不会停机。例如,如果一个容器发生故障,则需要启动另一个容器。如果由操作系统处理此行为,会不会更容易? Kubernetes 为您提供: 服务发现和负载均衡 Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。 存储编排 Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。 自动部署和回滚 您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。 自动二进制打包 Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。 自我修复 Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。 密钥与配置管理 Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。 Kubernetes 组件 初学者首先要了解Kubernetes的基本概念,包括master、node、pod等。 Master Master是Kubernetes集群的大脑,运行着的守护进程服务包括kube-apiserver、kube-scheduler、kube-controller-manager、etcd和Pod网络等。 kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷 Node 节点组件在每个节点上运行,维护运行 Pod 并提供 Kubernetes 运行环境。 kubelet 一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。 kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。 kube-proxy kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。 kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。 如果有 kube-proxy 可用,它将使用操作系统数据包过滤层。否则,kube-proxy 会转发流量本身。 容器运行环境(Container Runtime) 容器运行环境是负责运行容器的软件。 Kubernetes 支持多个容器运行环境: Docker、 containerd、cri-o、 rktlet 以及任何实现 Kubernetes CRI (容器运行环境接口)。 Pod 在Kubernetes中,最小的管理元素不是一个个独立的容器,而是Pod。Pod是管理,创建,计划的最小单元. 一个Pod相当于一个共享context的配置组,在同一个context下,应用可能还会有独立的cgroup隔离机制,一个Pod是一个容器环境下的“逻辑主机”,它可能包含一个或者多个紧密相连的应用,这些应用可能是在同一个物理主机或虚拟机上。 Pod 的context可以理解成多个linux命名空间的联合 PID 命名空间(同一个Pod中应用可以看到其它进程) 网络 命名空间(同一个Pod的中的应用对相同的IP地址和端口有权限) IPC 命名空间(同一个Pod中的应用可以通过VPC或者POSIX进行通信) UTS 命名空间(同一个Pod中的应用共享一个主机名称) 同一个Pod中的应用可以共享磁盘,磁盘是Pod级的,应用可以通过文件系统调用。 由于docker的架构,一个Pod是由多个相关的并且共享磁盘的容器组成,Pid的命名空间共享还没有应用到Docker中 和相互独立的容器一样,Pod是一种相对短暂的存在,而不是持久存在的,正如我们在Pod的生命周期中提到的,Pod被安排到结点上,并且保持在这个节点上直到被终止(根据重启的设定)或者被删除,当一个节点死掉之后,上面的所有Pod均会被删除。特殊的Pod永远不会被转移到的其他的节点,作为替代,他们必须被replace. 三 通过kubeadm方式创建一个kubernetes 对kubernetes的概念和组件有所了解以后,就可以通过kubeadm的方式创建一个kubernetes集群。 安装前准备工作 创建虚拟机 创建至少2台虚拟机,可以在本地或者公有云。 下载部署软件 需要下载的软件包括calico、demo-images、docker-ce、kube、kube-images、kubectl、metrics-server 安装部署 具体安装过程参考官网文档: https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/kubeadm/ 四 安装后的练习 安装后详读官方文档,做下面这些组件的练习操作,要达到非常熟练的程度。 Node Namespace Pod Deployment DaemonSet Service Job Static Pod ConfigMap Secrets Volume Init-containers Affinity and Anti-Affinity Monitor and logs Taints and Tolerations Cordon and Drain Backing up etcd 这些内容都非常熟练以后,基本就达到了入门的水平。
红亮 2020-03-02 11:09:17 0 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

为了方便大数据开发者快速找到相关技术问题和答案,开发者社区策划了大数据计算技术1000问内容,包含Flink、Spark等流式计算(实时计算)、离线计算、Hbase等实践中遇到的技术问...
问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

回答

除非无法避免,否则最好的方法是使MySQL表不这样做。 在编写应用程序时,通常希望以最大化速度和开发者速度的方式进行编写。仅在必要时才优化延迟(直到准备好答案的时间)或吞吐量(每个时间单位的答案数)。 仅当所有这些分区的总和不再适合单个数据库服务器实例时,才对分区进行分区,然后将其分配给不同的主机(=分片)-原因是写入或读取。 写的情况是a)写入频率使该服务器磁盘永久过载,或者b)正在进行过多的写操作,因此复制永久滞后于此复制层次结构中。 分片的读取情况是数据的大小太大,以致其工作集不再适合内存,并且数据读取开始击中磁盘,而不是大部分时间从内存中获取数据。 仅在必须分片时才这样做。 分片后,您会以多种方式为此付费: 您的大多数SQL不再是声明性的。 通常,在SQL中,您是在告诉数据库所需的数据,然后将其留给优化器以将其转换为数据访问程序。这是一件好事,因为它很灵活,而且因为编写这些数据访问程序是无聊的工作,会损害速度。 在分片环境中,您可能正在将节点A上的表与节点B上的数据连接起来,或者在节点A和B上具有比节点大的表,并将来自该表的数据与节点B和C上的数据连接起来。为了解决该问题,您开始手动编写基于应用程序端的基于散列的连接解析(或者您正在重塑MySQL集群),这意味着您最终将获得许多不再声明性的SQL,而是以过程方式表达SQL功能的SQL。 (例如,您在循环中使用SELECT语句)。 您将招致很多网络延迟。 通常,SQL查询可以在本地解决,优化器会知道与本地磁盘访问相关的成本,并以使成本最小化的方式来解析查询。 在分片环境中,可以通过以下方式解决查询:在网络上对多个节点运行键值访问(希望通过批量键访问,而不是每次往返都进行单个键查找),或者通过将WHERE子句的一部分向前推到它们可以使用的节点上或同时应用(称为“条件下推”)。 但是,即使在最好的情况下,这也要涉及比本地情况更多的网络往返,并且更加复杂。尤其是由于MySQL优化器对网络延迟一无所知(好吧,MySQL群集正在慢慢变得更好,但是对于群集外的原始MySQL来说仍然如此)。 您正在失去大量的SQL表达能力。 好的,这可能不太重要,但是外键约束和其他SQL数据完整性机制无法跨越多个分片。 MySQL没有允许正常工作的异步查询的API。 当相同类型的数据驻留在多个节点上(例如,节点A,B和C上的用户数据)时,通常需要针对所有这些节点解决横向查询(“查找90天未登录的所有用户帐户”或者更多”)。数据访问时间随节点数线性增长,除非可以并行请求多个节点并且结果随输入而汇总(“ Map-Reduce”)。 前提条件是异步通信API,对于良好的MySQL而言,它不存在。另一种选择是在子过程中进行大量分叉和建立联系,这正在访问整个季节过程。 一旦开始分片,数据结构和网络拓扑将成为您应用程序的性能指标。为了合理地执行性能,您的应用程序需要了解这些内容,这意味着实际上只有应用程序级分片才有意义。 问题是更多的,如果您想自动分片(例如,通过对主键进行散列来确定哪一行进入哪个节点),或者您想以手动方式进行功能拆分(“与xyz用户案例相关的表将转到此主,而与abc和def相关的表将转到该主”。 功能分片的优势在于,如果操作正确,大多数时候大多数开发人员都看不到它,因为与用户故事相关的所有表都可以在本地使用。这使他们仍然可以尽可能长时间地受益于声明式SQL,并且由于跨网络传输的次数保持最小,因此还可以减少网络延迟。 功能分片的缺点是它不允许任何单个表都大于一个实例,并且需要设计人员的手动注意。 功能性分片的优点是,相对容易地对现有代码库进行了很多更改,但变化不算太大。在过去的几年中,http://Booking.com做了多次,对他们来说效果很好。 说了这么多,看着你的问题,我相信你在问错问题,或者我完全误解了你的问题陈述。来源:stack overflow
保持可爱mmm 2020-05-17 20:49:45 0 浏览量 回答数 0

问题

【精品问答】130+大数据面试汇总

Hadoop 相关试题 Hive 相关试题 hive表关联查询,如何解决数据倾斜的问题? hive内部表和外部表的区别 Spark 相关试题 Spark Core面试篇01 随着Spark技术在企业中应用越来越广泛...
问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2

回答

Re回楼主wb313457d9的帖子 后台设置方法: 1、开启远程附件 2、启用SSL链接,预留功能,即SSL加密传输。如需打开,请注释掉SDK中的定义 3、FTP服务器地址,即阿里云OSS服务器地址,目前公网地址为:oss.aliyuncs.com,如有更改, 4、FTP服务器端口,OSS服务器端口,80 5、FTP账号,即OSS_ACCESS_ID 6、FTP密码,即OSS_ACCESS_KEY 7、被动模式,定时转发功能开关 8、远程附件目录,即BUCKET名称,设定后即不能修改,如必须修改,则需要人工转移文件 9、远程访问URL,即URL/BUCKET,也就是 http://oss.aliyuncs.com/(BUCKET),前面的网址也可以由CNAME解析为你自己的域名 10、超时时间,无意义,SDK中尚无定义 11、测试远程附件,不可用,因为discuz程序的原因,本程序已带有一个简单测试程序,运行成功后删除即可。 12、允许的附件扩展名,允许使用远程附件的扩展名 13、禁止的附件扩展名,禁止使用远程附件的扩展名 14、附件尺寸下限,使用远程附件的最小文件,鉴于aliyun除了基于流量还有基于请求数的计费方式,建议特别小的文件保留在web服务器上。 15、隐藏远程附件真实路径,阿里云提供了防盗链功能,两者只能二选一,打开防盗链就不能隐藏远程附件。如果是普通应用,建议使用防盗链即可,可以有效节省服务器流量,如果使用隐藏真实路径,只能是简单的扩展存储空间,失去了OSS的带宽优势。 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 如果论坛是UTF版的,经过测试可以正常使用,但是建议将所带的文件转换为UTF文件存储。 本程序基于discuz2.5开发,对于其他版本没有测试。 请大家在 数据存储计算版面的讨论贴跟帖 http://bbs.aliyun.com/read.php?tid=120635,这里留给作者发布补充吧。 ------------------------------------------------------------------ 这阿里云论坛限制真麻烦,想发点补充没法编辑,只能跟帖。 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 都可以。 在后台设置第15项,隐藏远程附件真实路径的话就是转到空间,但是这样就不可能开启OSS自带的防盗链功能。 如果不隐藏,请开启OSS自带的防盗链功能,这样就直接在OSS下载 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 经测试,支持图片格式的OSS直接下载,其他扩展名附件暂无法直接下载。 正在开发解决方案,请等待... ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 插件包已经更新,下载后覆盖原文件即可。 帖子不能编辑,请大家一直往下看了。 ------------------------- 回7楼ap0121d6h的帖子 能给出演示吗?》 已经完全去除了二次下载功能了,不可能再有二次下载。 楼上是否完整安装了整个插件。 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 不隐藏一定要设为公共读,并且强烈建议打开防盗链功能。 ------------------------- 打开防盗链图示 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 经过测试,discuzX2.5自带的日志,相册,文章(门户)均无隐藏真实附件地址功能,所以 使用签名下载附件仅适用于discuz论坛功能。 如果需要使用论坛之外的其他功能,请关闭隐藏真实附件地址功能,并将bucket设定为公共读且添加防盗链规则。 ------------------------- 回17楼ap6214f2r的帖子 开始最初的方案就是按你的方案做的,后来感觉改动太大,又推倒重来! 为了这么几行的程序,花了几十个小时看DZ的程序。 因为替换了DZ的FTP功能,怕造成DZ运行上的问题,因为DZ不止附件上传一个地方用到FTP,所以两天后才推出测试,又之后才发布. 这正是发布的比你晚的原因. 还有一点,如果上传到OSS失败的话,我的附件会自动留在WEB服务器上成为本地附件,访客是无法察觉的,不受影响。 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 插件包已经更新,修正开启防盗链或者私有读写的论坛会出现编辑帖子时图片无法显示的错误. 感谢网友们. PS:修改的文件越来越多了,少修改discuz文件的初衷可能难以实现了. ------------------------- 回22楼facebig的帖子 请在后台打开生成略缩图功能即可。 如果之前有大量未生成略缩图的附件,且编辑时出错,请联系我,我给你个专门版本。 ------------------------- 回24楼facebig的帖子 主机在国外的话,应该是OSS大图显示更有优势了。 因为略缩图根据dz的办法是,先从OSS读取原图,然后保存到web服务器上,然后生成略缩图,然后传输给用户,然后删除图片。 ------------------------- Rediscuz附件使用OSS存储完美解决方案wb版提供下载 在DISCUZ更新文件出来之前,请修改template\default\common\misc_imgcropper.htm 文件,找到$prefix}/{$_GET['img']} 去掉中间斜杠即可。经检查,不管是本地附件还是远程附件,都会多出一个斜杠。这应该是discuz的一个BUG。 只是,我们普通服务器多一个斜杠能访问,OSS多一个斜杠就不让访问了。 ------------------------- 回33楼ap0121d6h的帖子 非也。 album是空间的图片 forum 是论坛的图片 portal 是门户的图片 略缩图是在图片的后面加后缀thumb。 DZ的机制是从OSS读取图片,然后生成略缩图,然后送给用户,反倒更慢。如果网站开始就生成略缩图的话,幻灯片应该优先调用略缩图的吧。 首页打开理论上不会调用本插件的任何文件,不会导致运行变慢。 ------------------------- 回38楼facebig的帖子 经过检查,这是防盗链造成的。 如果一定要使用裁切功能,要不勾选防盗链的 “不允许Refer为空”,没有其他办法。 如果说一定要解决的话,只能使用私有读写 签名模式,然后修改相应的文件才可以。 ------------------------- 回44楼facebig的帖子 请替换source\include\portalcp\目录下的portalcp_block.php文件,替换前请先备份原文件。 ------------------------- 回48楼facebig的帖子 BLOCK在本地,请检查本地data\attachment\block目录 ------------------------- 回51楼ap0121d6h的帖子 DZ程序某个地方应该有问题,理论上只要没有成功上传到OSS的图片都会直接显示本地的。 ------------------------- 回49楼ardong的帖子 建议不上传除了图片和rar文件到OSS,这样就不会出你这样的情况。 如果一定要实现你的功能,必须由web服务器到OSS上读取文件,然后生成原来的文件,然后发送给用户,势必造成二次下载,浪费带宽和流量。 ------------------------- 回55楼facebig的帖子 没用远程附件当然正常。 DZ会判断是否启用远程附件,是否上传成功远程附件两个条件才会调用远程附件文件。 ------------------------- 回57楼facebig的帖子 办法当然有,只是再改下去,又要改DZ的文件了,改动太多可能会带来未知的不稳定性,还有不便于论坛的版本升级。 鱼与熊掌,不可兼得啊。 ------------------------- 回59楼facebig的帖子 放心保存在OSS上,没问题的。 ------------------------- 回62楼facebig的帖子 新版已发布,删除旧版,恢复文件,然后安装新版。 下载链接不变。 ------------------------- 回49楼ardong的帖子 已经发布可选安装包,你安装后上传的文件扩展名就不会变了,但是文件名还是会改变的。 ------------------------- 回68楼taokun0611的帖子 完全不影响。 就算服务器和OSS服务器断开倒是上传到OSS不成功,附件也会存储在本机作为本地附件,不会对访问者造成任何影响。 ------------------------- 回 70楼(ardong) 的帖子 就目前测试来说,基本上没有问题。 一个论坛不是下载站,不会一直上传大文件。 比如我的论坛最大也就允许1M的附件,特殊板块和人员才有大附件。 关于提示和进度条,目前尚无法实现。这仅仅是对dz功能的补充。 ------------------------- 回 73楼(taokun0611) 的帖子 软件说明里面已经说了,会覆盖四个文件,安装前备份这四个文件就可以了。 你出现的提示应该是略缩图没有上传成功,后台关闭略缩图试试。 ------------------------- 有保存在OSS上的http://test.lh.zj.cn/bbs 文章功能DZ并不完善,楼上给一下演示。另外,dz2.5并没有发现有家园功能。 ------------------------- PHP安装的有问题。因为OSS要使用CURL组件,所以就会报错。 ------------------------- 理论上不需要。如发生错误,请根据实际情况处理。此功能在下载附件的时候,出来的文件名正确就没事,不影响图片附件。 ------------------------- 回 85楼(ioriwong) 的帖子 后台选择有无生成略缩图的?? ------------------------- 回 94楼(ioriwong) 的帖子 你的幻灯片绕过url签名处理了。 为什么不用系统自带的幻灯片功能呢? 或者你后台填写的url地址是oss.php还是直接OSS地址? oss.php就是为了你们绕过签名的应用准备的。 ------------------------- 回 98楼(ap3390i7m) 的帖子 原附件可用手动上传的方式上传到OSS,然后把本地附件地址给换掉。 但是有个问题是,除了显示,其他操作均无法进行。 后台有个附件通,可以上传下载附件,这个转移上去是跟新附件效果一样的。 ------------------------- 200G无法通过附件通转移了,太大,太耗费时间了。下载ossbox,上传到OSS,然后改论坛附件访问地址这块就好了 ------------------------- 回 103楼(html5game) 的帖子 谢谢 当时测试UTF-8时,还没这个页面。 ------------------------- 回 106楼(ap7622o2t) 的帖子 谢谢 觉得用的好,请支持118号,每天可以投五票哦。 ------------------------- 回 108楼(victor7780) 的帖子 http://bbs.aliyun.com/read.php?tid=125181&fpage=2&page=2 第16楼 有问题请反馈。 ------------------------- 回 110楼(victor7780) 的帖子 如果还不行,我记得有人说过可以用瀑布流 这些是环境问题了,靠插件解决不了了 ------------------------- 看看你的curl 支持部支持301 ------------------------- 回 114楼(victor7780) 的帖子 机制不同,首页跟版面图片实现方式不同。 ------------------------- 回 117楼(victor7780) 的帖子 不一定支持的,我用阿里云一键包就是不支持的 ------------------------- 回 119楼(victor7780) 的帖子 改下php.ini 另外,百度下要设置什么 ------------------------- 回 122楼(ms263) 的帖子 经检查,上传正常 演示 http://test.lh.zj.cn/bbs ------------------------- 问题出在1101新版更新,修改了文件,稍后请下载更新文件包。 ------------------------- 回 127楼(layayoudi) 的帖子 DZ云附件discuz2.5 1101版本更新文件,仅适用于discuz!x2.5 1101版本,其他版本勿下! 这里帖子无法编辑,今后有新更新发往插件测试论坛 http://test.lh.zj.cn/bbs ------------------------- 回 128楼(wb3134_57d9) 的帖子 附件上传有误,请大家不要下载楼上的附件,有错误,请到测试论坛下载! http://test.lh.zj.cn/bbs 阿里云的五分钟编辑限制...... ------------------------- 回 133楼(zhongyitrip) 的帖子 UTF请自行转码 这个插件原始代码就是UTF的,发布的时候转的GB ------------------------- 回 135楼(ap3390i7m) 的帖子 不能用。 ------------------------- 回 138楼(houzhipeng620) 的帖子 请按照说明到后台设置参数并开启远程附件。 ------------------------- 后台没配置好,请按照说明配置。 ------------------------- 回 149楼(chinazhang) 的帖子 目前没有明确的解决办法,原因不明。 重新安装下试试了。 ------------------------- 回 151楼(chinazhang) 的帖子 应该是阿里云的环境有问题,只是多试几遍后又会好的。
wb3134_57d9 2019-12-01 23:32:48 0 浏览量 回答数 0

回答

为什么你的代码是一个单体? 除了已经实现了微前端的应用之外,所有前端应用本质上都是单一的应用。原因是如果您正在使用 React 库进行开发,并且如果您有两个团队,则两个团队都应该使用相同的React 库,并且两个团队应该在部署时保持同步,并且在代码合并期间始终会发生冲突。它们没有完全分离,很可能它们维护着相同的仓库并具有相同的构建系统。单体应用的退出被标志为微服务的出现。但是它适用于后端! 什么是微服务? 对于微服务,一般而言最简单的解释是,它是一种开发技术,允许开发人员为平台的不同部分进行独立部署,而不会损害其他部分。独立部署的能力允许他们构建孤立或松散耦合的服务。为了使这个体系结构更稳定,有一些规则要遵循,可以总结如下:每个服务应该只有一个任务,它应该很小。所以负责这项服务的团队应该很小。关于团队和项目的规模,James Lewis 和 Martin Fowler 在互联网上做出的最酷解释之一如下: 在我们与微服务从业者的对话中,我们看到了一系列服务规模。报道的最大规模遵循亚马逊关于Two Pizza Team的概念(即整个团队可以由两个比萨饼供给),意味着不超过十几个人。在规模较小的规模上,我们已经看到了一个由六人组成的团队支持六项服务的设置。 我画了一个简单的草图,为整体和微服务提供了直观的解释: 从上图可以理解,微服务中的每个服务都是一个独立的应用,除了UI。UI仍然是一体的!当一个团队处理所有服务并且公司正在扩展时,前端团队将开始苦苦挣扎并且无法跟上它,这是这种架构的瓶颈。 除了瓶颈之外,这种架构也会导致一些组织问题。假设公司正在发展并将采用需要 跨职能 小团队的敏捷开发方法。在这个常见的例子中,产品所有者自然会开始将故事定义为前端和后端任务,而 跨职能 团队将永远不会成为真正的 跨职能 部门。这将是一个浅薄的泡沫,看起来像一个敏捷的团队,但它将在内部分开。关于管理这种团队的更多信息将是一项非常重要的工作。在每个计划中,如果有足够的前端任务或者sprint中有足够的后端任务,则会有一个问题。为了解决这里描述的所有问题和许多其他问题,几年前出现了微前端的想法并且开始迅速普及。 解决微服务中的瓶颈问题:Micro Frontends 解决方案实际上非常明显,采用了多年来为后端服务工作的相同原则:将前端整体划分为小的UI片段。但UI与服务并不十分相似,它是最终用户与产品之间的接口,应该是一致且无缝的。更重要的是,在单页面应用时代,整个应用在客户端的浏览器上运行。它们不再是简单的HTML文件,相反,它们是复杂的软件,达到了非常复杂的水平。现在我觉得微型前端的定义是必要的: Micro Frontends背后的想法是将网站或Web应用视为独立团队拥有的功能组合。每个团队都有一个独特的业务或任务领域,做他们关注和专注的事情。团队是跨职能的,从数据库到用户界面开发端到端的功能。(micro-frontends.org) 根据我迄今为止的经验,对于许多公司来说,直接采用上面提出的架构真的很难。许多其他人都有巨大的遗留负担,这使他们无法迁移到新的架构。出于这个原因,更柔软的中间解决方案更加灵活,易于采用和安全迁移至关重要。在更详细地概述了体系结构后,我将尝试提供一些体系结构的洞察,该体系结构确认了上述提议并允许更灵活的方式。在深入了解细节之前,我需要建立一些术语。 整体结构和一些术语 让我们假设我们通过业务功能垂直划分整体应用结构。我们最终会得到几个较小的应用,它们与单体应用具有相同的结构。但是如果我们在所有这些小型单体应用之上添加一个特殊应用,用户将与这个新应用进行通信,它将把每个小应用的旧单体UI组合成一个。这个新图层可以命名为拼接图层,因为它从每个微服务中获取生成的UI部件,并为最终用户组合成一个无缝 UI,这将是微前端的最直接实现朗 为了更好地理解,我将每个小型单体应用称为微应用,因为它们都是独立的应用,而不仅仅是微服务,它们都有UI部件,每个都代表端到端的业务功能。 众所周知,今天的前端生态系统功能多样,而且非常复杂。因此,当实现真正的产品时,这种直接的解决方案还不够。 要解决的问题 虽然这篇文章只是一个想法,但我开始使用Reddit讨论这个想法。感谢社区和他们的回复,我可以列出一些需要解决的问题,我将尝试逐一描述。 当我们拥有一个完全独立的独立微应用时,如何创建无缝且一致的UI体验? 好吧,这个问题没有灵丹妙药的答案,但其中一个想法是创建一个共享的UI库,它也是一个独立的微应用。通过这种方式,所有其他微应用将依赖于共享的UI库微应用。在这种情况下,我们刚刚创建了一个共享依赖项, 我们就杀死了独立微应用的想法。 另一个想法是在根级共享CSS自定义变量( CSS custom variables )。此解决方案的优势在于应用之间的全局可配置主题。 或者我们可以简单地在应用团队之间共享一些SASS变量和混合。这种方法的缺点是UI元素的重复实现,并且应该对所有微应用始终检查和验证类似元素的设计的完整性。 我们如何确保一个团队不会覆盖另一个团队编写的CSS? 一种解决方案是通过CSS选择器名称进行CSS定义,这些名称由微应用名称精心选择。通过将该范围任务放在拼接层上将减少开发开销,但会增加拼接层的责任。 另一种解决方案可以是强制每个微应用成为自定义Web组件(custom web component)。这个解决方案的优点是浏览器完成了范围设计,但需要付出代价:使用shadow DOM进行服务器端渲染几乎是不可能的。此外,自定义元素没有100%的浏览器支持,特别是IE。 我们应该如何在微应用之间共享全局信息? 这个问题指出了关于这个主题的最关注的问题之一,但解决方案非常简单:HTML 5具有相当强大的功能,大多数前端开发人员都不知道。例如,自定义事件(custom events) 就是其中之一,它是在微应用中共享信息的解决方案。 或者,任何共享的pub-sub实现或T39可观察的实现都可以实现。如果我们想要一个更复杂的全局状态处理程序,我们可以实现共享的微型Redux,通过这种方式我们可以实现更多的相应式架构。 如果所有微应用都是独立应用,我们如何进行客户端路由? 这个问题取决于设计的每个实现, 所有主要的现代框架都通过使用浏览器历史状态在客户端提供强大的路由机制, 问题在于哪个应用负责路由以及何时。 我目前的实用方法是创建一个共享客户端路由器,它只负责顶级路由,其余路由器属于相应的微应用。假设我们有 /content/:id 路由定义。共享路由器将解析 /content,已解析的路由将传递到ContentMicroApp。ContentMicroApp是一个独立的服务器,它将仅使用 /:id 进行调用。 我们必须是服务器端渲染,但是有可能使用微前端吗? 服务器端呈现是一个棘手的问题。如果你正在考虑iframes缝合微应用然后忘记服务器端渲染。同样,拼接任务的Web组件也不比iframe强大。但是,如果每个微应用能够在服务器端呈现其内容,那么拼接层将仅负责连接服务器端的HTML片段。 与传统环境集成至关重要!但是怎么样? 为了整合遗留系统,我想描述我自己的策略,我称之为“ 渐进式入侵 ”。 首先,我们必须实现拼接层,它应该具有透明代理的功能。然后我们可以通过声明一个通配符路径将遗留系统定义为微应用:LegacyMicroApp 。因此,所有流量都将到达拼接层,并将透明地代理到旧系统,因为我们还没有任何其他微应用。 下一步将是我们的 第一次逐步入侵 :我们将从LegacyMicroApp中删除主要导航并用依赖项替换它。这种依赖关系将是一个使用闪亮的新技术实现的微应用:NavigationMicroApp 。 现在,拼接层将每个路径解析为 Legacy Micro App ,它将依赖关系解析为 Navigation MicroApp ,并通过连接这两个来为它们提供服务。 然后通过主导航遵循相同的模式来为引导下一步。 然后我们将继续从Legacy MicroApp中获取逐步重复以上操作,直到没有任何遗漏。 如何编排客户端,这样我们每次都不需要重新加载页面? 拼接层解决了服务器端的问题,但没有解决客户端问题。在客户端,在将已粘贴的片段作为无缝HTML加载后,我们不需要每次在URL更改时加载所有部分。因此,我们必须有一些异步加载片段的机制。但问题是,这些片段可能有一些依赖关系,这些依赖关系需要在客户端解决。这意味着微前端解决方案应提供加载微应用的机制,以及依赖注入的一些机制。 根据上述问题和可能的解决方案,我可以总结以下主题下的所有内容: 客户端 编排路由隔离微应用应用之间通信微应用UI之间的一致性 服务端 服务端渲染路由依赖管理 灵活、强大而简单的架构 所以,这篇文章还是很值得期待的!微前端架构的基本要素和要求终于显现! 在这些要求和关注的指导下,我开始开发一种名为microfe的解决方案。在这里,我将通过抽象的方式强调其主要组件来描述该项目的架构目标。 它很容易从客户端开始,它有三个独立的主干结构:AppsManager, Loader, Router 和一个额外的MicroAppStore。 AppsManager AppsManager 是客户端微应用编排的核心。AppsManager的主要功能是创建依赖关系树。当解决了微应用的所有依赖关系时,它会实例化微应用。 Loader 客户端微应用编排的另一个重要部分是Loader。加载器的责任是从服务器端获取未解析的微应用。 Router 为了解决客户端路由问题,我将 Router 引入了 microfe。与常见的客户端路由器不同,microf 的功能有限,它不解析页面而是微应用。假设我们有一个URL /content/detail/13 和一个ContentMicroApp。在这种情况下,microfe 将URL解析为 /content/,它将调用ContentMicroApp /detail/13 URL部分。 MicroAppStore 为了解决微应用到微应用客户端的通信,我将MicroAppStore引入了 microfe。它具有与Redux库类似的功能,区别在于:它对异步数据结构更改和reducer 声明更灵活。 服务器端部分在实现上可能稍微复杂一些,但结构更简单。它只包含两个主要部分 StitchingServer 和许多MicroAppServer。 MicroAppServer MicroAppServer 的最小功能可以概括为 init 和 serve。 虽然 MicroAppServer 首先启动它应该做的是使用 微应用声明 调用 SticthingServer 注册端点,该声明定义了 MicroAppServer 的微应用 依赖关系, 类型 和 URL架构。我认为没有必要提及服务功能,因为没有什么特别之处。 StitchingServer StitchingServer 为 MicroAppServers 提供注册端点。当 MicroAppServer 将自己注册到 StichingServer 时,StichingServer 会记录MicroAppServer 的声明。 稍后,StitchingServer 使用声明从请求的URL解析 MicroAppServers。 解析M icroAppServer 及其所有依赖项后,CSS,JS和HTML中的所有相对路径都将以相关的 MicroAppServer 公共URL为前缀。另外一步是为CSS选择器添加一个唯一的 MicroAppServer 标识符,以防止客户端的微应用之间发生冲突。 然后 StitchingServer 的主要职责就是:从所有收集的部分组成并返回一个无缝的HTML页面。 其他实现一览 甚至在2016年被称为微前端之前,许多大公司都试图通过 BigPipe 来解决Facebook等类似问题。如今这个想法正在获得验证。不同规模的公司对该主题感兴趣并投入时间和金钱。例如,Zalando开源了其名为Project Mosaic的解决方案。我可以说,微型和 Project Mosaic.遵循类似的方法,但有一些重要的区别。虽然microfe采用完全分散的路由定义来增强每个微应用的独立性,但Project Mosaic更喜欢每条路径的集中路由定义和布局定义。通过这种方式,Project Mosaic可以实现轻松的A/B测试和动态布局生成。 对于该主题还有一些其他方法,例如使用iframe作为拼接层,这显然不是在服务器端而是在客户端。这是一个非常简单的解决方案,不需要太多的服务器结构和DevOps参与。这项工作只能由前端团队完成,因此可以减轻公司的组织负担,同时降低成本。 已经有一个框架叫做 single-spa。该项目依赖于每个应用的命名约定来解析和加载微应用。容易掌握想法并遵循模式。因此,在您自己的本地环境中尝试该想法可能是一个很好的初步介绍。但是项目的缺点是你必须以特定的方式构建每个微应用,以便他们可以很好地使用框架。 最后的想法 我相信微前端话题会更频繁地讨论。如果该主题能够引起越来越多公司的关注,它将成为大型团队的事实发展方式。在不久的将来,任何前端开发人员都可以在这个架构上掌握一些见解和经验,这真的很有用。 关于本文 译者:@Vincent.W 译文:https://zhuanlan.zhihu.com/p/82965940 作者:@onerzafer 原文:https://hackernoon.com/understanding-micro-frontends-b1c11585a297 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区
茶什i 2020-01-06 17:57:24 0 浏览量 回答数 0

问题

springboot windows10风格 shiro 安全框 activiti 整合项目框架源

为Springboot工作流版本 windows 风格, 浏览器访问操作使用,非桌面应用程序 1.代码生成器: (单表、主表、明细表、树形表,快速开发利器) freemaker模版技术 ,0个代...
游客q6uipubrszn5g 2019-12-01 19:56:32 18 浏览量 回答数 0

问题

springboot windows10风格 activiti 整合项目框架源码 shiro 安全框

为Springboot工作流版本 windows 风格, 浏览器访问操作使用,非桌面应用程序 1.代码生成器: (单表、主表、明细表、树形表,快速开发利器) freemaker模版技术 ,0个代码不...
游客ydre72cd7ywew 2019-12-01 19:52:06 39 浏览量 回答数 0

问题

springboot windows10风格 activiti 整合项目框架源码 shiro 安全框

为Springboot工作流版本 windows 风格, 浏览器访问操作使用,非桌面应用程序 1.代码生成器: (单表、主表、明细表、树形表,快速开发利器) freemaker模版技术 ,0个代...
游客egqjd4t7mlyom 2019-12-01 19:54:38 72 浏览量 回答数 1

问题

Activiti 工作流项目源码 代码生成器 websocket即时通讯 springmvc SS

工作流模块 1.模型管理 :web在线流程设计器、预览流程xml、导出xml、部署流程 2.流程管理 :导入导出流程资源文件、查看流程图、根据流程实例反射出流程模型、激活挂起 3.运行中流程:...
游客egqjd4t7mlyom 2019-12-01 19:54:26 50 浏览量 回答数 0

问题

Activiti6.0 java项目框架 spring5 SSM 工作流引擎 审批流程

工作流模块 1.模型管理 :web在线流程设计器、预览流程xml、导出xml、部署流程 2.流程管理 :导入导出流程资源文件、查看流程图、根据流程实例反射出流程模型、激活挂起 3.运行中流程:...
游客q6uipubrszn5g 2019-12-01 19:59:18 27 浏览量 回答数 0

问题

Activiti6.0 java项目框架 spring5 SSM 工作流引擎 审批流程

工作流模块 1.模型管理 :web在线流程设计器、预览流程xml、导出xml、部署流程 2.流程管理 :导入导出流程资源文件、查看流程图、根据流程实例反射出流程模型、激活挂起 3.运行中流程:...
游客ydre72cd7ywew 2019-12-01 20:01:08 10 浏览量 回答数 0

问题

Activiti6.0 java项目框架 spring5 SSM 工作流引擎 审批流程

工作流模块---------------------------------------------------------------------------------------------------------- 1.模型管理 ...
游客ydre72cd7ywew 2019-12-01 19:53:06 30 浏览量 回答数 0

问题

Activiti6.0 工作流引擎 websocket即时聊天发图片文字 好友群组 SSM源码

工作流模块---------------------------------------------------------------------------------------------------------- 1.模型管理 ...
游客q6uipubrszn5g 2019-12-01 19:57:13 37 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。
游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

问题

某政务网站性能优化

门户类网站性能测试分析及调优 1 背景   前段时间,性能测试团队经历了一个规模较大的门户网站的性能优化工作,该网站的开发和合作涉及多个组织和部门,而且网站的重要性不言而喻,同时上...
猫饭先生 2019-12-01 21:25:38 1412 浏览量 回答数 0

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20210409)

产品简介 什么是MaxCompute呢? https://developer.aliyun.com/ask/289579 使用MaxCompute需要什么专业技能? https://developer.aliyun.co...
亢海鹏 2020-05-29 15:10:00 42262 浏览量 回答数 34

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT 阿里云科技驱动中小企业数字化