• 关于

    本地小程序服务框架对比

    的搜索结果

回答

@南湖船老大 过来看看吧,船老大。###### 查看access日志每个请求大致花了多少时间 代码分段加日志,检查时间究竟花在了哪里 具体问题具体解决。 ######回复 @len : 用了thinkphp框架,我们正在自己写的MVC构架。######回复 @都市网达 : 你现在是多少,考虑到用了框架的话应该会有100以内吧。还是得看你逻辑是不是如果有缓存的就直接取缓存了,如果是这样的还这么慢,那就自己写个不带框架的试试,如果两个差距大了那就是框架的原因了。如果不大的话可以从系统环境上去考虑。######回复 @len : 如果大于10ms应该怎么优化呢,g-zip已经开启。######回复 @都市网达 : 多少算正常,如果是有缓存的操作,正常应该是在10MS以内吧。######access日志还算是正常的。###### @eechen###### 在压测的时候,top,iostat,vmstat也要开着啊,同时监控。这么做的目的,是为了确认瓶颈是CPU,还是IO,还是带宽。服务器再牛逼,给你1M的带宽,那也卡成翔啊。 4核8G的云主机,压到这个值不算高,但也不算低,具体要看业务是否复杂,这个还真不能随便比较。不过我感觉你这偏低了。 如果确认数据库上的消耗比较少,就去看前端web服务器的日志,你是Apache,Apache也可以调整下进程数,反复调节观察,做到平衡。 我优化Apache的做法除了修改参数,也会用lsof来查看一个Apache进程加载的文件,去掉不必要的Apache模块和PHP扩展。 另外,注意看下open files有没有修改limit,TCP协议这块也可以优化。 APC的话,仅仅对垃圾代码作用大一点,他的作用主要是opcode的优化,减少include文件的加载。如果代码架构的不错,这个APC的作用会更小。 文件系统的优化我不懂。这块也是可以做文章的 ######i5-3230M(双核四线程),4GB内存,64位Ubuntu14.04(Kernel3.14.5) 1个Nginx工人进程(OpenResty1.5.8.1),8个PHP-FPM工人进程(PHP5.5.8),开启opcache. MySQL和Memcached均通过apt-get安装. ab -c100 -n10000 http://127.0.0.1/t.php 测试1:进行1次mysql数据库连接和1个查询,并输出50次md5时间戳计算,RPS能达到3K+. 测试2:进行1次memcached连接和1次set/get操作,并输出50次md5时间戳计算,RPS能达到3.7K+. ######回复 @eechen : @都市网达 请提供详细信息######回复 @codepat : 楼主给的信息明显不够,我也帮不上忙。######这是你的数据。@你是让你看下楼主的问题原因在哪######先不说别的,php5.3后的大版本相对5.3性能有质的提升,升级吧######说明阿里晕的服务器很渣,同样的程序你在自己的ubuntu上跑一下就可以对比出来###### 引用来自“南湖船老大”的评论 在压测的时候,top,iostat,vmstat也要开着啊,同时监控。这么做的目的,是为了确认瓶颈是CPU,还是IO,还是带宽。服务器再牛逼,给你1M的带宽,那也卡成翔啊。 4核8G的云主机,压到这个值不算高,但也不算低,具体要看业务是否复杂,这个还真不能随便比较。不过我感觉你这偏低了。 如果确认数据库上的消耗比较少,就去看前端web服务器的日志,你是Apache,Apache也可以调整下进程数,反复调节观察,做到平衡。 我优化Apache的做法除了修改参数,也会用lsof来查看一个Apache进程加载的文件,去掉不必要的Apache模块和PHP扩展。 另外,注意看下open files有没有修改limit,TCP协议这块也可以优化。 APC的话,仅仅对垃圾代码作用大一点,他的作用主要是opcode的优化,减少include文件的加载。如果代码架构的不错,这个APC的作用会更小。 文件系统的优化我不懂。这块也是可以做文章的 apache 2.2.24,采用mpm_prefork模式 <IfModule mpm_prefork_module> ServerLimit 2048 StartServers 5 MinSpareServers 3 MaxSpareServers 30 MaxClients 2048 MaxRequestsPerChild 0 </IfModule> 这里的参数有调整,程序是使用thinkphp框架,我是比较讨厌用TP的,但是不是由我来决定的。 ###### 引用来自“eechen”的评论i5-3230M(双核四线程),4GB内存,64位Ubuntu14.04(Kernel3.14.5) 1个Nginx工人进程(OpenResty1.5.8.1),8个PHP-FPM工人进程(PHP5.5.8),开启opcache. MySQL和Memcached均通过apt-get安装. ab -c100 -n10000 http://127.0.0.1/t.php 测试1:进行1次mysql数据库连接和1个查询,并输出50次md5时间戳计算,RPS能达到3K+. 测试2:进行1次memcached连接和1次set/get操作,并输出50次md5时间戳计算,RPS能达到3.7K+. 你这里的测试是本地,不要担心带宽的问题,而且 t.php应该只是一个普通数据库操作文件吧,不过我可以试试将程序迁移到nginx。######回复 @eechen : 你的建议非常对好,其实我对nginx来处理PHP一直不带好感,一般用nginx来做代理,PHP使用apache处理后端。我想阿里云的性能也是有影响的。######所以我也建议你先在本地进行测试,避免带宽带来的影响。就PHP而言,nginx/php-fpm的性能并不比httpd/libphp5.so的性能高,只是php-fpm把PHP剖离出来更方便扩展和管理。###### vps ubuntu 1G+512M java+nginx+tomcat7+memcache 如果是centos性能会更好一些 Server Software:        nginx Server Hostname:        cms.zendlab.com Server Port:            80 Document Path:          /apps/api/book.jsonp?method=list Document Length:        31150 bytes Concurrency Level:      50 Time taken for tests:   1.046 seconds Complete requests:      1000 Failed requests:        0 Write errors:           0 Total transferred:      31789000 bytes HTML transferred:       31150000 bytes Requests per second:    955.90 [#/sec] (mean) Time per request:       52.307 [ms] (mean) Time per request:       1.046 [ms] (mean, across all concurrent requests) Transfer rate:          29674.98 [Kbytes/sec] received

kun坤 2020-06-08 11:18:17 0 浏览量 回答数 0

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

回答

我们都知道JVM的内存管理是自动化的,Java语言的程序指针也不需要开发人员手工释放,JVM的GC会自动的进行回收,但是,如果编程不当,JVM仍然会发生内存泄露,导致Java程序产生了OutOfMemoryError(OOM)错误。 产生OutOfMemoryError错误的原因包括: java.lang.OutOfMemoryError: Java heap spacejava.lang.OutOfMemoryError: PermGen space及其解决方法java.lang.OutOfMemoryError: unable to create new native threadjava.lang.OutOfMemoryError:GC overhead limit exceeded对于第1种异常,表示Java堆空间不够,当应用程序申请更多的内存,而Java堆内存已经无法满足应用程序对内存的需要,将抛出这种异常。 对于第2种异常,表示Java永久带(方法区)空间不够,永久带用于存放类的字节码和长常量池,类的字节码加载后存放在这个区域,这和存放对象实例的堆区是不同的,大多数JVM的实现都不会对永久带进行垃圾回收,因此,只要类加载的过多就会出现这个问题。一般的应用程序都不会产生这个错误,然而,对于Web服务器来讲,会产生有大量的JSP,JSP在运行时被动态的编译成Java Servlet类,然后加载到方法区,因此,太多的JSP的Web工程可能产生这个异常。 对于第3种异常,本质原因是创建了太多的线程,而能创建的线程数是有限制的,导致了这种异常的发生。 对于第4种异常,是在并行或者并发回收器在GC回收时间过长、超过98%的时间用来做GC并且回收了不到2%的堆内存,然后抛出这种异常进行提前预警,用来避免内存过小造成应用不能正常工作。 下面两个异常与OOM有关系,但是,又没有绝对关系。 java.lang.StackOverflowError ...java.net.SocketException: Too many open files对于第1种异常,是JVM的线程由于递归或者方法调用层次太多,占满了线程堆栈而导致的,线程堆栈默认大小为1M。 对于第2种异常,是由于系统对文件句柄的使用是有限制的,而某个应用程序使用的文件句柄超过了这个限制,就会导致这个问题。 上面介绍了OOM相关的基础知识,接下来我们开始讲述笔者经历的一次OOM问题的定位和解决的过程。 产生问题的现象 在某一段时间内,我们发现不同的业务服务开始偶发的报OOM的异常,有的时候是白天发生,有的时候是晚上发生,有的时候是基础服务A发生,有的时候是上层服务B发生,有的时候是上层服务C发生,有的时候是下层服务D发生,丝毫看不到一点规律。 产生问题的异常如下: Caused by: java.lang.OutOfMemoryError: unable to create new native thread at java.lang.Thread.start0(Native Method)at java.lang.Thread.start(Thread.java:597)at java.util.Timer.(Timer.java:154) 解决问题的思路和过程 经过细心观察发现,产生问题虽然在不同的时间发生在不同的服务池,但是,晚上0点发生的时候概率较大,也有其他时间偶发,但是都在整点。 这个规律很重要,虽然不是一个时间,但是基本都在整点左右发生,并且晚上0点居多。从这个角度思考,整点或者0点系统是否有定时,与出问题的每个业务系统技术负责人核实,0点没有定时任务,其他时间的整点有定时任务,但是与发生问题的时间不吻合,这个思路行不通。 到现在为止,从现象的规律上我们已经没法继续分析下去了,那我们回顾一下错误本身: java.lang.OutOfMemoryError: unable to create new native thread 顾名思义,错误产生的原因就是应用不能创建线程了,但是,应用还需要创建线程。为什么程序不能创建线程呢? 有两个具体原因造成这个异常: 由于线程使用的资源过多,操作系统已经不能再提供给应用资源了。操作系统设置了应用创建线程的最大数量,并且已经达到了最大允许数量。上面第1条资源指的是内存,而第2条中,在Linux下线程使用轻量级进程实现的,因此线程的最大数量也是操作系统允许的进程的最大数量。 内存计算 操作系统中的最大可用内存除去操作系统本身使用的部分,剩下的都可以为某一个进程服务,在JVM进程中,内存又被分为堆、本地内存和栈等三大块,Java堆是JVM自动管理的内存,应用的对象的创建和销毁、类的装载等都发生在这里,本地内存是Java应用使用的一种特殊内存,JVM并不直接管理其生命周期,每个线程也会有一个栈,是用来存储线程工作过程中产生的方法局部变量、方法参数和返回值的,每个线程对应的栈的默认大小为1M。 Linux和JVM的内存管理示意图如下: 内存结构模型因此,从内存角度来看创建线程需要内存空间,如果JVM进程正当一个应用创建线程,而操作系统没有剩余的内存分配给此JVM进程,则会抛出问题中的OOM异常:unable to create new native thread。 如下公式可以用来从内存角度计算允许创建的最大线程数: 最大线程数 = (操作系统最大可用内存 - JVM内存 - 操作系统预留内存)/ 线程栈大小 根据这个公式,我们可以通过剩余内存计算可以创建线程的数量。 下面是问题出现的时候,从生产机器上执行前面小节介绍的Linux命令free的输出: free -m >> /tmp/free.log total used free shared buffers cached Mem: 7872 7163 709 0 31 3807-/+ buffers/cache: 3324 4547Swap: 4095 173 3922Tue Jul 5 00:27:51 CST 2016从上面输出可以得出,生产机器8G内存,使用了7G,剩余700M可用,其中操作系统cache使用3.8G。操作系统cache使用的3.8G是用来缓存IO数据的,如果进程内存不够用,这些内存是可以释放出来优先分配给进程使用。然而,我们暂时并不需要考虑这块内存,剩余的700M空间完全可以继续用来创建线程数: 700M / 1M = 700个线程 因此,根据内存可用计算,当OOM异常:unable to create new native thread问题发生的时候,还有700M可用内存,可以创建700个线程。 到现在为止可以证明此次OOM异常不是因为线程吃光所有的内存而导致的。 线程数对比 上面提到,有两个具体原因造成这个异常,我们上面已经排除了第1个原因,那我们现在从第2个原因入手,评估是否操作系统设置了应用创建线程的最大数量,并且已经达到了最大允许数量。 在问题出现的生产机器上使用ulimit -a来显示当前的各种系统对用户使用资源的限制: robert@robert-ubuntu1410:~$ ulimit -acore file size (blocks, -c) 0data seg size (kbytes, -d) unlimitedscheduling priority (-e) 0file size (blocks, -f) unlimitedpending signals (-i) 62819max locked memory (kbytes, -l) 64max memory size (kbytes, -m) unlimitedopen files (-n) 65535pipe size (512 bytes, -p) 8POSIX message queues (bytes, -q) 819200real-time priority (-r) 0stack size (kbytes, -s) 10240cpu time (seconds, -t) unlimitedmax user processes (-u) 1024virtual memory (kbytes, -v) unlimitedfile locks (-x) unlimited这里面我们看到生产机器设置的允许使用的最大用户进程数为1024: max user processes (-u) 1024现在,我们必须获得问题出现的时候,用户下创建的线程情况。 在问题产生的时候,我们使用前面小结介绍的JVM监控命令jstack命令打印出了Java线程情况,jstack命令的示例输出如下: robert@robert-ubuntu1410:~$ jstack 27432017-04-09 12:06:51Full thread dump Java HotSpot(TM) Server VM (25.20-b23 mixed mode): "Attach Listener" #23 daemon prio=9 os_prio=0 tid=0xc09adc00 nid=0xb4c waiting on condition [0x00000000] java.lang.Thread.State: RUNNABLE "http-nio-8080-Acceptor-0" #22 daemon prio=5 os_prio=0 tid=0xc3341000 nid=0xb02 runnable [0xbf1bd000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.ServerSocketChannelImpl.accept0(Native Method) at sun.nio.ch.ServerSocketChannelImpl.accept(ServerSocketChannelImpl.java:241) - locked <0xcf8938d8> (a java.lang.Object) at org.apache.tomcat.util.net.NioEndpoint$Acceptor.run(NioEndpoint.java:688) at java.lang.Thread.run(Thread.java:745) "http-nio-8080-ClientPoller-1" #21 daemon prio=5 os_prio=0 tid=0xc35bc400 nid=0xb01 runnable [0xbf1fe000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:79) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked <0xcf99b100> (a sun.nio.ch.Util$2) - locked <0xcf99b0f0> (a java.util.Collections$UnmodifiableSet) - locked <0xcf99aff8> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97) at org.apache.tomcat.util.net.NioEndpoint$Poller.run(NioEndpoint.java:1052) at java.lang.Thread.run(Thread.java:745) ......从jstack命令的输出并统计后,我们得知,JVM一共创建了904个线程,但是,这还没有到最大的进程限制1024。 robert@robert-ubuntu1410:~$ grep "Thread " js.log | wc -l 904 这是我们思考,除了JVM创建的应用层线程,JVM本身可能会有一些管理线程存在,而且操作系统内用户下可能也会有守护线程在运行。 我们继续从操作系统的角度来统计线程数,我们使用上面小结介绍的Linux操作系统命令pstack,并得到如下的输出: PID LWP USER %CPU %MEM CMD 1 1 root 0.0 0.0 /sbin/init 2 2 root 0.0 0.0 [kthreadd] 3 3 root 0.0 0.0 [migration/0] 4 4 root 0.0 0.0 [ksoftirqd/0] 5 5 root 0.0 0.0 [migration/0] 6 6 root 0.0 0.0 [watchdog/0] 7 7 root 0.0 0.0 [migration/1] 8 8 root 0.0 0.0 [migration/1] 9 9 root 0.0 0.0 [ksoftirqd/1] 10 10 root 0.0 0.0 [watchdog/1] 11 11 root 0.0 0.0 [migration/2] 12 12 root 0.0 0.0 [migration/2] 13 13 root 0.0 0.0 [ksoftirqd/2] 14 14 root 0.0 0.0 [watchdog/2] 15 15 root 0.0 0.0 [migration/3] 16 16 root 0.0 0.0 [migration/3] 17 17 root 0.0 0.0 [ksoftirqd/3] 18 18 root 0.0 0.0 [watchdog/3] 19 19 root 0.0 0.0 [events/0] 20 20 root 0.0 0.0 [events/1] 21 21 root 0.0 0.0 [events/2] 22 22 root 0.0 0.0 [events/3] 23 23 root 0.0 0.0 [cgroup] 24 24 root 0.0 0.0 [khelper] ...... 7257 7257 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #2 [idle 1 sec] 7258 7258 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #3 [idle 1 sec] 7259 7259 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #4 [idle 1 sec] ...... 9040 9040 app 0.0 30.5 /apps/prod/jdk1.6.0_24/bin/java -Dnop -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Ddbconfigpath=/apps/dbconfig/ -Djava.io.tmpdir=/apps/data/java-tmpdir -server -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m -Dcom.sun.management.jmxremote -Djava.rmi.server.hostname=192.168.10.194 -Dcom.sun.management.jmxremote.port=6969 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp -Xshare:off -Dhostname=sjsa-trade04 -Djute.maxbuffer=41943040 -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Dworkdir=/apps/data/tomcat-work -Djava.endorsed.dirs=/apps/product/tomcat-trade/endorsed -classpath commonlib:/apps/product/tomcat-trade/bin/bootstrap.jar:/apps/product/tomcat-trade/bin/tomcat-juli.jar -Dcatalina.base=/apps/product/tomcat-trade -Dcatalina.home=/apps/product/tomcat-trade -Djava.io.tmpdir=/apps/data/tomcat-temp/ org.apache.catalina.startup.Bootstrap start 9040 9041 app 0.0 30.5 /apps/prod/jdk1.6.0_24/bin/java -Dnop -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Ddbconfigpath=/apps/dbconfig/ -Djava.io.tmpdir=/apps/data/java-tmpdir -server -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m -Dcom.sun.management.jmxremote -Djava.rmi.server.hostname=192.168.10.194 -Dcom.sun.management.jmxremote.port=6969 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp -Xshare:off -Dhostname=sjsa-trade04 -Djute.maxbuffer=41943040 -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Dworkdir=/apps/data/tomcat-work -Djava.endorsed.dirs=/apps/product/tomcat-trade/endorsed -classpath commonlib:/apps/product/tomcat-trade/bin/bootstrap.jar:/apps/product/tomcat-trade/bin/tomcat-juli.jar -Dcatalina.base=/apps/product/tomcat-trade -Dcatalina.home=/apps/product/tomcat-trade -Djava.io.tmpdir=/apps/data/tomcat-temp/ org.apache.catalina.startup.Bootstrap start ......通过命令统计用户下已经创建的线程数为1021。 $ grep app pthreads.log | wc -l 1021 现在我们确定,1021的数字已经相当的接近1021的最大进程数了,正如前面我们提到,在Linux操作系统里,线程是通过轻量级的进程实现的,因此,限制用户的最大进程数,就是限制用户的最大线程数,至于为什么没有精确达到1024这个最大值就已经报出异常,应该是系统的自我保护功能,在还剩下3个线程的前提下,就开始报错。 到此为止,我们已经通过分析来找到问题的原因,但是,我们还是不知道为什么会创建这么多的线程,从第一个输出得知,JVM已经创建的应用线程有907个,那么他们都在做什么事情呢? 于是,在问题发生的时候,我们又使用JVM的jstack命令,查看输出得知,每个线程都阻塞在打印日志的语句上,log4j中打印日志的代码实现如下: public void callAppenders(LoggingEvent event) { int writes = 0; for(Category c = this; c != null; c=c.parent) { // Protected against simultaneous call to addAppender, removeAppender,... synchronized(c) { if(c.aai != null) { writes += c.aai.appendLoopOnAppenders(event); } if(!c.additive) { break; } } } if(writes == 0) { repository.emitNoAppenderWarning(this); } }在log4j中,打印日志有一个锁,锁的作用是让打印日志可以串行,保证日志在日志文件中的正确性和顺序性。 那么,新的问题又来了,为什么只有凌晨0点会出现打印日志阻塞,其他时间会偶尔发生呢?这时,我们带着新的线索又回到问题开始的思路,凌晨12点应用没有定时任务,系统会不会有其他的IO密集型的任务,比如说归档日志、磁盘备份等? 经过与运维部门碰头,基本确定是每天凌晨0点日志切割导致磁盘IO被占用,于是堵塞打印日志,日志是每个工作任务都必须的,日志阻塞,线程池就阻塞,线程池阻塞就导致线程池被撑大,线程池里面的线程数超过1024就会报错。 到这里,我们基本确定了问题的原因,但是还需要对日志切割导致IO增大进行分析和论证。 首先我们使用前面小结介绍的vmstat查看问题发生时IO等待数据: vmstat 2 1 >> /tmp/vm.logprocs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 3 0 177608 725636 31856 3899144 0 0 2 10 0 0 39 1 1 59 0 Tue Jul 5 00:27:51 CST 2016可见,问题发生的时候,CPU的IO等待为59%,同时又与运维部门同事复盘,运维同事确认,脚本切割通过cat命令方法,先把日志文件cat后,通过管道打印到另外一个文件,再清空原文件,因此,一定会导致IO的上升。 其实,问题的过程中,还有一个疑惑,我们认为线程被IO阻塞,线程池被撑开,导致线程增多,于是,我们查看了一下Tomcat线程池的设置,我们发现Tomcat线程池设置了800,按理说,永远不会超过1024。 maxThreads="800" minSpareThreads="25" maxSpareThreads="75" enableLookups="false" redirectPort="8443" acceptCount="100" debug="0" connectionTimeout="20000" disableUploadTimeout="true" /> 关键在于,笔者所在的支付平台服务化架构中,使用了两套服务化框架,一个是基于dubbo的框架,一个是点对点的RPC,用来紧急情况下dubbo服务出现问题,服务降级使用。 每个服务都配置了点对点的RPC服务,并且独享一个线程池: maxThreads="800" minSpareThreads="25" maxSpareThreads="75" enableLookups="false" redirectPort="8443" acceptCount="100" debug="0" connectionTimeout="20000" disableUploadTimeout="true" /> 由于我们在对dubbo服务框架进行定制化的时候,设计了自动降级原则,如果dubbo服务负载变高,会自动切换到点对点的RPC框架,这也符合微服务的失效转移原则,但是设计中没有进行全面的考虑,一旦一部分服务切换到了点对点的RPC,而一部分的服务没有切换,就导致两个现场池都被撑满,于是超过了1024的限制,就出了问题。 到这里,我们基本可以验证,问题的根源是日志切割导致IO负载增加,然后阻塞线程池,最后发生OOM:unable to create new native thread。 剩下的任务就是最小化重现的问题,通过实践来验证问题的原因。我们与性能压测部门沟通,提出压测需求: Tomcat线程池最大设置为1500.操作系统允许的最大用户进程数1024.在给服务加压的过程中,需要人工制造繁忙的IO操作,IO等待不得低于50%。经过压测压测部门的一下午努力,环境搞定,结果证明完全可以重现此问题。 最后,与所有相关部门讨论和复盘,应用解决方案,解决方案包括: 全部应用改成按照小时切割,或者直接使用log4j的日志滚动功能。Tomcat线程池的线程数设置与操作系统的线程数设置不合理,适当的减少Tomcat线程池线程数量的大小。升级log4j日志,使用logback或者log4j2。这次OOM问题的可以归结为“多个因、多个果、多台机器、多个服务池、不同时间”,针对这个问题,与运维部、监控部和性能压测部门的同事奋斗了几天几夜,终于通过在线上抓取信息、分析问题、在性能压测部门同事的帮助下,最小化重现问题并找到问题的根源原因,最后,针对问题产生的根源提供了有效的方案。 与监控同事现场编写的脚本 本节提供一个笔者在实践过程中解决OOM问题的一个简单脚本,这个脚本是为了解决OOM(unable to create native thread)的问题而在问题机器上临时编写,并临时使用的,脚本并没有写的很专业,笔者也没有进行优化,保持原汁原味的风格,这样能让读者有种身临其境的感觉,只是为了抓取需要的信息并解决问题,但是在线上问题十分火急的情况下,这个脚本会有大用处。 !/bin/bash ps -Leo pid,lwp,user,pcpu,pmem,cmd >> /tmp/pthreads.logecho "ps -Leo pid,lwp,user,pcpu,pmem,cmd >> /tmp/pthreads.log" >> /tmp/pthreads.logecho date >> /tmp/pthreads.logecho 1 pid=ps aux|grep tomcat|grep cwh|awk -F ' ' '{print $2}'echo 2 echo "pstack $pid >> /tmp/pstack.log" >> /tmp/pstack.logpstack $pid >> /tmp/pstack.logecho date >> /tmp/pstack.logecho 3 echo "lsof >> /tmp/sys-o-files.log" >> /tmp/sys-o-files.loglsof >> /tmp/sys-o-files.logecho date >> /tmp/sys-o-files.logecho 4 echo "lsof -p $pid >> /tmp/service-o-files.log" >> /tmp/service-o-files.loglsof -p $pid >> /tmp/service-o-files.logecho date >> /tmp/service-o-files.logecho 5 echo "jstack -l $pid >> /tmp/js.log" >> /tmp/js.logjstack -l -F $pid >> /tmp/js.logecho date >> /tmp/js.logecho 6 echo "free -m >> /tmp/free.log" >> /tmp/free.logfree -m >> /tmp/free.logecho date >> /tmp/free.logecho 7 echo "vmstat 2 1 >> /tmp/vm.log" >> /tmp/vm.logvmstat 2 1 >> /tmp/vm.logecho date >> /tmp/vm.logecho 8 echo "jmap -dump:format=b,file=/tmp/heap.hprof 2743" >> /tmp/jmap.logjmap -dump:format=b,file=/tmp/heap.hprof >> /tmp/jmap.logecho date >> /tmp/jmap.logecho 9 echo end

hiekay 2019-12-02 01:39:43 0 浏览量 回答数 0

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

问题

某政务网站性能优化

猫饭先生 2019-12-01 21:25:38 1412 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

【javascript学习全家桶】934道javascript热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:22 6202 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板