• 关于

    情感分析

    的搜索结果

回答

阿里小蜜在类人能力构建的进程中目前是什么进展了?比如像用户情感分析、情感安抚等。同时您觉得情感分析对提升阿里小蜜智能导购目前的帮助作用有多大。
珍宝珠 2019-12-02 03:19:58 0 浏览量 回答数 0

问题

店铺必备分析——产品和客户(虎嗅商学院)

你的店铺卖不出去东西,有时候不单单是因为你的店铺装修不够美观,或者你的客单价高,还有其他种种的原因,虎嗅商学院分析一个店铺的好坏得需要一定的能力才能够分析透彻,那么今天教...
huxiu商学院 2019-12-01 21:53:03 5595 浏览量 回答数 1

问题

自然语言处理中情感分析Check Authorization Fails, Date expire!

我使用JAVA调用情感分析API,报错,提示Check Authorization Fails, Date expire! 怎么办呢?...
zoezoezoe 2019-12-01 19:37:09 1956 浏览量 回答数 2

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

• 快速感知:高优先级源站最快2分钟获取数据,常规源站平均10分钟获取数据。 • 全面覆盖:基于全网公开数据(千万源站,每日更新20亿网页),覆盖各类网站、论坛、自媒体,特殊站点可提交需求订制。 • 精准有效:机器学习、自然语言、文本处理的协同处理,通过客户参与模型训练,准确率最高可达95%以上。 • 分级告警:根据信息来源、作者身份、敏感事项等自动判定风险级别(P1~P4),分时段分级告警。 • 智能分析:提供传播路径分析、热点事件分析、情感分析、热词云、标签分析、智能模版过滤。 • 协同处理:处置功能丰富,包括数据标签、事件管理、观点、地点、标记、过滤、备注、自定义属性等。 • 深度集成:定向开放API,合作伙伴可深度集成,为客户量身打造“限量版”。 • 支持小语种:关键词匹配、情感分析、聚类分析支持19种语言:中文、英语、俄语、法语、日语、韩语、西班牙语,德语、葡萄牙语、荷兰语、意大利语,阿拉伯语、土耳其语、希伯来语、波兰语、印地语、印尼语、越南语、泰语。
LiuWH 2020-03-23 15:42:07 0 浏览量 回答数 0

回答

各服务所需资源不同,因此对应的限制不同,具体参看下表: NLP基础服务: 服务 单用户QPS 最大请求长度(字节) 多语言分词 10 1024 词性标注 10 1024 命名实体 10 1024 情感分析 10 1024 中心词提取 3 512 智能文本分类 3 20480 文本信息抽取 1 92160 商品评价解析 10 1536 NLP自学习平台: 算法类型 单模型QPS 最大请求长度(字节) 文本实体抽取 10 暂无限制 文本分类 10 暂无限制 关键短语抽取 10 暂无限制 关系抽取 10 暂无限制 情感分析 10 暂无限制
保持可爱mmm 2020-03-27 10:46:13 0 浏览量 回答数 0

回答

你的报告是从用户反馈数据中得到的。不知道您说的用户反馈具体是什么形式。如果是纯文字的话,那就涉及到自然语言处理技术(情感词分析等技术),需要将评论处理,分类等,这么做工作量还是很大的。就像购物网站的商品评论一样,需要将用户评论的文字和其给的评价等级结合处理来分析用户反馈。个人觉得,为了方便以后的分析,提前设置些对商品描述的问题,答案的形式可以给定由用户来选择。这些问题直接由用户来回答,这样的话可以高效的总结用户的意见形成对产品的整体反馈。
1591307824978665 2019-12-02 00:24:14 0 浏览量 回答数 0

回答

本产品基于全网公开发布数据,结合媒体传播路径和受众群体画像,利用语义分析、情感算法和机器学习等大数据技术,识别公众对品牌形象、热点事件和公共政策的认知趋势。网上突发信息从发出到采集、分析、告警和推送,最快2分钟完成,洞察先机。
LiuWH 2020-03-23 14:12:51 0 浏览量 回答数 0

问题

阿里云ET是什么?

T是阿里云研发的人工智能。ET的特色在于基于强大的云计算和大数据处理能力,目前ET具备了在语音识别、图像/视频识别、交通预测、情感分析等技能,并朝着大数据AI的方向发展。 ET的前身是阿里云小Ai,...
nicenelly 2019-12-01 21:05:08 822 浏览量 回答数 0

回答

您说的“语音识别成文字之后,如何再识别文字进行相应的指令操作”这个动作应该是涉及到NLP自然语言处理的相关产品,可能有对语义理解以及情感分析的产品,这都属于数据智能产品系列,如果有需求,可以加钉钉群:23362839
AI事儿 2019-12-02 01:55:00 0 浏览量 回答数 0

问题

【教程免费下载】 Spark大数据分析实战

Preface?前  言 为什么要写这本书 Spark大数据技术还在如火如荼地发展,Spark中国峰会的召开,各地meetup的火爆举行,开源软件Spark也因此水涨船高,很多公司已经...
沉默术士 2019-12-01 22:07:51 1453 浏览量 回答数 1

问题

【精品问答】公众趋势分析

本产品基于全网公开发布数据,结合媒体传播路径和受众群体画像,利用语义分析、情感算法和机器学习等大数据技术,识别公众对品牌形象、热点事件和公共政策的认知趋势。网上突发信息从发出到采集、分析、告警和推送...
montos 2020-04-08 13:55:58 2 浏览量 回答数 1

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送
巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

回答

**01 明确目标 ** 鲁迅曾经没说过:“明确分析目标,你的分析已经成功了一大半”。 做深入分析之前,面对这一堆评价数据,我们要明确,究竟想通过分析来解决什么问题?只有明确分析目标,才能把发散的思维聚焦起来。 为了给大家一个明确的分析锚点,假设我们是这款辣椒酱的产品负责人,要基于评价,更好的获悉消费者对产品的看法,从而为后续产品优化提供思路。 所以,我们的分析目标是“基于评价反馈,量化消费者感知,指导优化产品”。 注:这里给到的一个假设目标并不完美,主要是抛砖引玉,大家可以从不同的维度来提出目标假设,尝试不同分析方向。 是不是有那么一丢丢分析思路了?别急,目标还需要继续拆解。 02 拆解目标 这些年来,最有价值的一个字,便是“拆”了: 在数据分析中也是同理。 我们在上一步已经确定了“基于评价优化产品”的目标,但这只是一个笼统模糊的目标。要让目标真正可落地,“拆”是必不可少的一步。 “拆”的艺术大体可以分为两步,第一步是换位思考。 评价来源于客户,客户对产品有哪些方面的感知呢?我们可以闭上眼睛,幻想自己购买了这款辣椒酱。 接着进入第二步,基于换位的逻辑拆解,这里可以按照模拟购物流程的逻辑来拆解: 首先,李子柒本身有非常强的IP光环,大家在选购时或多或少是慕名而来。所以,在购买决策时,到底有多大比例是冲着李子柒来的? Next,在没收到货前,影响体验的肯定是物流,付款到收货用了几天?派送员态度怎么样,送货上门了吗? 收到货后,使用之前,体感最强的则是包装。外包装有没有破损?有没有变形?产品包装是精致还是粗糙? 接下来是产品体验,拿辣椒酱来说,日期是否新鲜?牛肉用户是否喜欢?到底好不好吃? 吃完之后,我们建立起了对产品的立体感知——性价比。我花钱买这个产品到底值不值?这个价位是贵了还是便宜?实惠不实惠? 品牌、物流、包装、产品(日期、口味)和性价比五大天王锋芒初现,我们下一步需要量化消费者对于每个方面的感知。 03 Python实现 对于评价的拆解和量化,这里介绍一种简单粗暴的方式,按标点把整条评论拆分成零散的模块,再设置一系列预置词来遍历。 注:再次强调我们这篇内容的主题是“如何基于最基础的技术,做进一步的分析,这里假设我们只会最基础的python语法和pandas。 有同学会问“为什么不用分词”!此问可谓正中我怀。不过,我把这个问题当作开放式思考题留给大家——如果用分词,如何实现同样的效果,以及有什么优缺点? 言归正传,我们先看看实战爬取的评论数据,一共1794条: 把每条评论按照标点拆分成短句,为了省事,用了简单的正则拆分: 我们发现,就算是比较长段的评论,也只是涉及到品牌、物流、包装、产品和性价比的部分方面,所以,我们依次去遍历匹配,看短句中有没有相关的内容,没有就跳过,有的话再判断具体情绪。 以物流为例,当短句中出现“物流”、“快递”、“配送”、“取货”等关键词,大体可以判定这个短句和物流相关。 接着,再在短句中寻找代表情绪的词汇,正面的像“快”、“不错”、“棒”、“满意”、“迅速”;负面的“慢”、“龟速”、“暴力”、“差”等。 在我们预设词的基础上进行两次遍历匹配,大体可以判断这句话是不是和物流相关,以及客户对物流的看法是正面还是负面: 为方便理解,用了灰常丑陋的语法来一对一实现判断。包装、产品和性价比等其他模块的判断,也是沿用上述逻辑,只是在预设词上有所差异,部分代码如下: def judge_comment(df,result): judges = pd.DataFrame(np.zeros(13 * len(df)).reshape(len(df),13), columns = ['品牌','物流正面','物流负面','包装正面','包装负面','原料正面', '原料负面','口感正面','口感负面','日期正面','日期负面', '性价比正面','性价比负面']) for i in range(len(result)): words = result[i] for word in words: #李子柒的产品具有强IP属性,基本都是正面评价,这里不统计情绪,只统计提及次数 if '李子柒' in word or '子柒' in word or '小柒' in word or '李子七' in word\ or '小七' in word: judges.iloc[i]['品牌'] = 1 #先判断是不是物流相关的 if '物流' in word or '快递' in word or '配送' in word or '取货' in word: #再判断是正面还是负面情感 if '好' in word or '不错' in word or '棒' in word or '满意' in word or '迅速' in word: judges.iloc[i]['物流正面'] = 1 elif '慢' in word or '龟速' in word or '暴力' in word or '差' in word: judges.iloc[i]['物流负面'] = 1 #判断是否包装相关 if '包装' in word or '盒子' in word or '袋子' in word or '外观' in word: if '高端' in word or '大气' in word or '还行' in word or '完整' in word or '好' in word or\ '严实' in word or '紧' in word: judges.iloc[i]['包装正面'] = 1 elif '破' in word or '破损' in word or '瘪' in word or '简陋' in word: judges.iloc[i]['包装负面'] = 1 #产品 #产品原料是牛肉为主,且评价大多会提到牛肉,因此我们把这个单独拎出来分析 if '肉' in word: if '大' in word or '多' in word or '足' in word or '香' in word or '才' in word: judges.iloc[i]['原料正面'] = 1 elif '小' in word or '少' in word or '没' in word: judges.iloc[i]['原料负面'] = 1 #口感的情绪 if '口味' in word or '味道' in word or '口感' in word or '吃起来' in word: if '不错' in word or '好' in word or '棒' in word or '鲜' in word or\ '可以' in word or '喜欢' in word or '符合' in word: judges.iloc[i]['口感正面'] = 1 elif '不好' in word or '不行' in word or '不鲜' in word or\ '太烂' in word: judges.iloc[i]['口感负面'] = 1 #口感方面,有些是不需要出现前置词,消费者直接评价好吃难吃的,例如: if '难吃' in word or '不好吃' in word: judges.iloc[i]['口感负面'] = 1 elif '好吃' in word or '香' in word: judges.iloc[i]['口感正面'] = 1 #日期是不是新鲜 if '日期' in word or '时间' in word or '保质期' in word: if '新鲜' in word: judges.iloc[i]['日期正面'] = 1 elif '久' in word or '长' in word: judges.iloc[i]['日期负面'] = 1 elif '过期' in word: judges.iloc[i]['日期负面'] = 1 #性价比 if '划算' in word or '便宜' in word or '赚了' in word or '囤货' in word or '超值' in word or \ '太值' in word or '物美价廉' in word or '实惠' in word or '性价比高' in word or '不贵' in word: judges.iloc[i]['性价比正面'] = 1 elif '贵' in word or '不值' in word or '亏了' in word or '不划算' in word or '不便宜' in word: judges.iloc[i]['性价比负面'] = 1 final_result = pd.concat([df,judges],axis = 1) return final_result 运行一下,结果毕现: 第一条评价,很明显的说快递暴力,对应“物流负面”计了一分。 第二条评价,全面夸赞,提到了品牌,和正面的物流、口感信息。 第三条评价,粉丝表白,先说品牌,再夸口感。 看起来还不赖,下面我们对结果数据展开分析。 04 结果分析 我们先对结果做个汇总: 一共爬了1794条评论,评论中有提及到我们关注点的有1937次(之所以用次,是因为一条评论中可能涉及到多个方面)。粗略一瞥,口感和原料占比较高,画个图更细致的看看。 看来,辣椒酱的口感(好不好吃)是客户最最最关注的点,没有之一,占比高达57.98%,领先其他类别N个身位。 慢随其后的,是原料、品牌、性价比和包装,而物流和日期则鲜有提及,消费者貌似不太关注,或者说目前基本满足要求。 那不同类别正负面评价占比是怎么样的呢? 整体来看,主流评论以好评为主,其中口感、品牌(这个地方其实没有细分)、包装以正面评价占绝对主导。 原料和性价比,负面评价占比分别是14%和38%,而物流和日期由于本身占比太少,参考性不强。 作为一个分析师,我们从原料、性价比负面评价占比中看到了深挖的机会。 原料负面评价是单纯的在吐槽原材料吗? 初步筛选之后,发现事情并没有那么简单。 原料负面评价共出现了53次,但里面有24次给了口感正面的评价,甚至还有8次原料正面评价!罗生门吗? 这8次即正面又负面的原料评价,其实是揭了我们在预置词方面的不严谨,前面判断牛肉相关的短句,“小”就是负面,“大”就是正面,有些绝对。 而判断准确的原料差评中,虽然有一半说味道不错,但还是不留情面的吐槽了牛肉粒之小,之少,甚至还有因此觉得被骗。 如何让牛肉粒在体感上获取更多的好评,是应该在产品传播层做期望控制的宣导?还是在产品层增加牛肉的“肉感”?需要结合具体业务进一步探究。 性价比呢? 性价比相关负面评价共58次,负面情绪占性价比相关的38%。这些负面评价消费者大多数认为价格偏贵,不划算,还有一部分提到了通过直播渠道购买价格相对便宜,但日常价格难以接受。 坦白讲,这款辣酱的价格在线上确实属于高端价位,而价格体系是一个比较复杂的场景,这里暂不展开分析。 但是对于这部分认为性价比不符预期的客户,是应该因此反推产品价格,还是把他们打上“价格敏感的标签”,等大促活动唤醒收割,这是两条可以考虑并推进的道路。 物流和日期提及太少,不具备参考性,但为了不那么虎头蛇尾,我们还是顺手看一眼物流负面评价: 果然,物流是一项必备需求,基本满足预期的话消费者并不会主动提及,没达预期则大概率会雷霆震怒。而物流暴力、速度太慢是两个永恒的槽点。 至此,我们基于看起来简单的评价数据,用简单浅白的方式,做了细致的拆分,并通过拆分更进一步的量化和分析,向深渊,哦不,向深入迈进了那么一丢丢。
茶什i 2020-01-10 14:16:36 0 浏览量 回答数 0

问题

人工智能——nlp自学习平台如何python调用api?

# 创建AcsClient实例 print 'done1_______________' client = AcsClient('xxx', 'xxxx', 'cn-hangzhou') print 'done2______________...
游客kxcy7fja2m6nu 2019-12-01 19:43:52 256 浏览量 回答数 1

回答

招募集合贴 | 有需求即随时更新 职责描述: 1、负责研发日常工作任务跟进; 2、负责公司系统新功能的开发,以及原有功能的维护; 3、根据需求文档完成相应的文档以及相应的开发; 4、协助产品部完成系统的规划,需求分析; 5、协助前端设计师完成系统的前端设计; 6、协助架构设计师完成系统的总体; 7、负责某个具体模块的设计、开发、单元测试、维护; 8、配合其他软件工程师共同完成某个模块或多个模块的设计、开发、单元测试、维护。 职位要求: 1、计算机相关专业本科及以上学历,4年以上的J2SE/J2EE实际开发经验;(全日制统招,学信网可查) 2、有一定的项目架构设计能力,能协助架构师搭建架构; 3、能独立封装组件、设计服务能力、并且能协助同事设计与开发; 4、熟练掌握OO的编程思想; 5、熟悉Java设计模式,以及UML的设计; 6、熟练掌握Spring,springBoot springCloud,myBatis/iBatis等开源框架;(主要使用springboot微服务框架) 7、熟练使用Eclipse Java IDE开发工具,熟悉 Tomcat,Resin等Web Server; 8、熟悉关系型数据库,有使用Oracle,Mysql的实际经验; 工作地点:蛇口网谷(2号线水湾) 工作时间:周末双休,早九晚六 薪酬:18-23K,十三薪,提供两餐 邮箱:hr.tech@ascend-global.com 阿里巴巴2020春季实习生求职意向表 一份好的工作,从实习开始,想要和大神一起共事,闲来无事一起探讨技术二三事吗?想要一毕业就就能拿出优秀的简历,让各个大厂争相送你offer吗?想要接受良好工作环境、实习期甩开同学们吗? 阿里2020春招实习生~值得申请 https://survey.aliyun.com/apps/zhiliao/jztLGve0?spm=a2c6h.14062461.J_1935739830.1.585b33e1EEaMqr 阿里校招+社招 业务团队-淘系技术部–多媒体算法团队-视频语义理解算法工程师/专家 我们团队依托淘系数十亿级的视频数据,有丰富的业务场景和技术方向! 我们持续以技术驱动产品和商品创新,不断探索和衍生颠覆型互联网新技术,技术成果获得国家科技进步二等奖! 我们不断吸引机器学习、视觉算法、音视频通信、端侧智能等领域人才加入,让科技引领面来未来的商业创新和进步! 岗位详情信息请查看https://tianchi.aliyun.com/forum/postDetail?spm=a2c6h.12873639.0.0.332bb953TEhTTr&postId=94418 简历请发送至andy.ybm@alibaba-inc.com,主题请注明社招/校招 饿了吗本地生活招聘了哦 阿里巴巴淘宝搜索推荐算法团队急招,绿色通道,直接面试 划重点:本人来自阿里巴巴淘宝搜索推荐算法团队,是整个阿里集团非常核心的团队,由于现在要启动大项目,实习hc特别多!!!有兴趣的朋友赶紧把简历投过来,保证1小时内回复!实习生有机会直接转正 岗位详情信息查看:https://tianchi.aliyun.com/forum/postDetail?spm=a2c6h.12873639.0.0.332bb953pkKhYQ&postId=88676 简历投递邮箱:xuming.panxm@alibaba-inc.com,格式【实习/校招-姓名】 阿里集团-阿里云智能事业群-阿里云-基础设施事业部-天基-集群智能运维团队校招 团队使命:为集团各大规模分布式服务和Web应用运维提供统一的基础架构、技术和人工智能服务。团队专注于提供一站式,自动化,智能化的资源服务开通,管控和运维能力。通过采用先进的人工智能系统和算法,实时监控和分析各类系统数据,并联动各相关系统进行运维操作,形成数据分析和反馈的完整闭环链路,持续优化集团资源运营和服务运维决策。天基团队的使命是为阿里巴巴各业务场景提供智能,快速,高效,稳定的DevOps平台,支撑和保障阿里巴巴全球化发展战略。 岗位详情信息查看:https://tianchi.aliyun.com/forum/postDetail?spm=a2c6h.12873639.0.0.332bb953zJzaiJ&postId=94133 投递邮箱:jiongzhou.ljz@alibaba-inc.com, mars.ly@alibaba-inc.com 阿里巴巴达摩院-语言技术实验室 [校招+实习生招聘] 我们是阿里巴巴达摩院语言技术实验室基础技术团队,致力于研究词法、句法、多语言、知识库建设等基础技术,并应用到文本挖掘技术(分类、聚类、情感、问答)以及相关业务(搜索、推荐、客服机器人、国际化等)中,全面支持阿里经济体相关应用的需求,提供的nlp服务目前每日调用超过万亿次。我们努力提升技术、驱动商业,目标是成为最有价值的商业自然语言基础技术团队。 我们在寻找自然语言处理相关校招生和实习生,一起深入探索文本背后的含义,挑战业界难题,提升阿里巴巴产品体验,服务亿万用户。 岗位详情信息查看:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&&postId=94412 投递邮箱: chuanqi.tcq@alibaba-inc.com 阿里安全-智能认知/NLP团队招聘[校招+实习生] 自2009年成立集团安全部​以来,阿里安全就在随着业务升级和拓展,不断探索创新的安全技术能力,以及世界级的安全风险防御体系,保护阿里巴巴经济体内消费者和整个生态伙伴的安全。https://s.alibaba.com我们 智能认知团队 每天需要处理阿里经济体中海量商品、海量内容的各种风险,以及保障各业务中的数据安全,正在招聘此方向的优秀人才。 岗位详情信息:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&&postId=94494 投递邮箱:stone.zhangr@alibaba-inc.com 阿里云-云原生应用平台基础技术中台招聘-社招-21届校招 云原生应用平台致力于打造稳定、标准、先进的云原生平台,推动行业面向云原生技术升级与革命。在这里,你将与来自云计算、大数据领域的顶尖技术专家亲密合作,在全球独一无二的场景与规模中从事 Kubernetes、Service Mesh、Serverless、Open Application Model(OAM)、Cloud Native Microservices 、OpenMessaging、Event Streaming等云原生生态核心基础技术及 Apache Dubbo,Apache RocketMQ, Nacos,Arthas 等顶级开源项目的研发与落地工作。在标杆级的平台上,既服务阿里巴巴全球经济体,更服务全世界的开发者用户。 岗位详情介绍:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&&postId=94430 请以附件的方式发送pdf版简历至 xiangsheng.gh@alibaba-inc.com 邮件标题:云原生应用平台简历-{姓名} 阿里云-弹性计算招聘-社招-2020届校招 今年阿里云弹性计算实习生内推即将启动,我们是阿里云智能最核心的部门,在这里你将体验极致性能和架构的挑战,海量的数据,最前沿的算法问题挑战,简历亲自review,保障专人跟进,请对弹性计算感兴趣的同学发送简历给我们,直接内推进入系统。邮箱:chao.qianc@alibaba-inc.com 岗位详情信息:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&postId=94508 阿里云-数据智能-基础产品研发-社招/2021届校招 基础产品研发团队为部门提供数据中台技术与产品,利用AI平台、数据分析与决策、数据可视化、知识图谱等技术为用户和ISV提供先进、高效的产品与工具,为“智能+”战略的落实提供卓越的基础设施。 作为后端研发专家,你将主要负责阿里云数据中台服务器端的研发工作,内部包括AI平台、数据分析与决策、数据可视化、知识图谱等多个领域方向的技术创新的研发工作,在这里你将致力于让“数据智能”普惠到各行各业,让行业用户也能拥有阿里巴巴强大的基于数据的分析、决策、展现能力。加入我们,共创产业AI, 让各行各业拥有智慧的大脑! 招聘岗位: Java后端工程师、前端工程师、大数据开发工程师、算法工程师 投递邮箱:jianxun.zxl@taobao.com 岗位详情请查看:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&&postId=94734 2020淘宝技术部消息中台团队校招火热 岗位详情信息,请查看:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.424425d0xxSL3d&postId=94370 【阿里巴巴】【2021校招】【极速响应】【100%转正】阿里云-大数据&AI-团队直招 岗位详情信息,请查看:https://tianchi.aliyun.com/forum/postDetail?spm=a2c6h.12873639.0.0.332bb953ymPQtN&postId=94935
问问小秘 2020-04-01 18:18:22 0 浏览量 回答数 0

回答

Re创业过程中细微的管理和质量 前两天和一个创业的同学聊了聊,他谈自己公司的管理时,说到了自己用了管理程序和制度对企业进行管理。我很好奇就问他:在创业初期就几个兄弟一起干,怎么有精力制定管理程序、制度和管理流程。他解释到刚开始就几个人,没有专门编制程序制度,因为都是从某德国知名企业离职的,很多规则仍在沿用原来企业规定和要求。 看来小型团队与其去建立程序制度,不如大家一起讨论制定简单的、可达成的共识来进行管理。 ------------------------- 也谈战略战术 上周去海南博鳌度假,我知道这个地方是因为这里是亚洲论坛举办地。这次去了之后,发现这里的沙滩、海浪、气候和地理条件非常好,但是这里的游客却非常少,如果和三亚比那绝对不是在一个数量级上。 从外部环境和大趋势上讲人在满足物质需要的基础上,需要通过旅游、休闲和度假来改善自己的精神生活和娱乐,国家又通过举办亚洲论坛来为这里宣传,因此当地发展这里的旅游业作为大战略是正确的。但我在这里发现这里存在的问题,交通不是很方便;博鳌亚洲论坛的会址参观居然需要买票,旁边还建了一个禅寺;很美的沙滩但清理不及时;大量的海滨建成了房屋和销售…… 如果说博鳌发展旅游业的战略很好,那么在发展旅游业的战术上却是失败的,但对于处在风口上,“猪”都能飞起来的时机上,博鳌旅游业终将会发展起来,但是要走不少弯路。 ------------------------- 一篇有关美国创业孵化器的文章 同时我在我的博客中分享了一篇转载的有关美国孵化器的文章,欢迎来我的博客阅读。   我的博客是:“http://blog.sina.com.cn/u/5599046475” ------------------------- 武汉光谷的创客园区 前几天去武汉出差,到光谷附近逛了逛。光谷是武汉的高校比较集中的地方,也是高新产业的新区,这两年发展的很好,形成了一个新的商业街区。在光谷步行街附近,看到创客街区和创客咖啡馆的宣传板和招牌,特意去看了看。 一个“创客街区”想设立在一个商住两用楼的顶楼,通过这个吸引买家买商铺和公寓。创意不错,但主推的是地产项目,创客街区只是个噱头。 另一个“创客咖啡馆”设在一个繁华路口的办公楼中,我看了看这些公司的牌子,都是金融类和商品的交易公司,由于交易公司的工作时间比较固定,下午6点中,大楼已经关门落锁。这个“创客咖啡馆”可能就是为了交易员休息或谈生意的真正的咖啡馆。 看到这里大家可以感觉到所谓的全民谈创客、谈孵化器更多的还是停留在一些口头的层面,都是口惠而实不至,当创客相关的内容对其自身的利益没有帮助或推动时,那么这些人会很快的放弃这些创客,而转向其他的更能吸引眼球的地方。 由于没有时间整理,周末我再发布有关微质量管理体系的内容。 我的博客是:“http://blog.sina.com.cn/u/5599046475”,欢迎大家关注。 ------------------------- 组织的结构形式 当一个组织了目标和准则,并且明确了组织的leader后,就可以开始为了这个目标努力了。但组织是有一些或一群人在一起,如何分工,以什么样的形式开展工作,就是组织的“形式”。 我们常听到的有关组织的说法很多,如:功能性组织、事业部组织、矩阵性组织团队、直线性组织、超级事业部等等。但其实所有组织的结构形式都是组织在大、小组织之间转换。因为当组织大到一定程度就难以控制和协作,从而需要把组织切分,就形成了如事业部组织、超级事业部组织;当组织小的时候组织的leader可以较容易的控制组织,采取了直线性组织、或矩阵性组织。 对于普通的创业者,开始采取小型团队,在这个团队里,每个人有相应的分工,负责相应的工作,作为团队的leader可以直接管理团对中的每个人,这种组织是最高效的。但随着组织规模的增大,每项工作的工作量都会大幅增加,小型团队中每个人就变成了每个部门,每个部门又形成另一个小型团队,组织越来越大,层级或者说功能块越来越多,管理的人越来越多,相应的需要管理的资源也越来越多,如财务、人事、文档、软硬件、后勤等等,组织沟通链条越来越长、每个员工和管理者对同一件工作的理解不同,造成了一项工作的走向与最高的leader的期望产生偏差和组织人员之间的矛盾,然后不断的纠偏和化解矛盾,形成更多的指令和偏差,再纠正等等。这就是创业者到大公司发展过程中组织结构形式变化导致管理越来越复杂的过程。现在对于组织结构形式的改变都是想把大公司的中的这种缺陷给化解掉,形成具有小型团队的大型公司。 任何一种组织形式都有其优点和缺点,没有一定之规。小型团队更多的适用于解决问题或者一项具体的开发任务,所以更适用于创业团队;层级的管理是在事业处于爆发期时,不得不采取的模式,这时小型团队已经无法应付相对大规模的生产工作,但在组织规模增大后就要考虑大规模组织的低效。 小型组织可以让成员之间的职责在任务之间转换,但相对大规模的组织就需要明确成员的具体职责,并保持不变,否则职责调配将称为一项巨大的工作,而且容易产生冲突。小型组织可以产生规定以外情感的联系,可以让成员之间互相支持,规模相对大的组织大家更愿意按规定行事。不过情感是个双刃剑有好的情感、就会有不好的情感,这方面创业者需要充分考虑。 我个人倾向于即使是小型组织对于组织分工也最好有个初步明确,并明确相互支持和备用的基本原则,在具体工作时,根据大家工作量的大小进行适度调配。 好的,我们现在有了好的目标和策略,有了好的团队领导,明确了组织结构的形式,已经是一个可以开始工作的团队了。下次就要谈谈我们要做哪些工作、怎么工作了。 我的博客是:“http://blog.sina.com.cn/u/5599046475”,欢迎大家关注。 ------------------------- 资源管理 传统行业规模化生产组织所指的资源一般是指人、财、物。 人指的是员工和管理人员;财指的是资金;物指的是材料、设备设施。组织的领导有一个重要的任务就是保护组织已有的资源,配置资源让资源在组织的工作中发挥最大的作用,让资源在生产和投资过程中保值增值。 随着品牌经济、知识经济、互联网经济等新形式的发展,我认为组织资源应该在原有人、财、物的基础上扩展(个人总结,希望能有补充或指正): 1.        品牌商誉; 2.        企业资质和/或相关许可; 3.        专利权或著作权; 4.        专有软件或APP软件(存在较强的技术壁垒或著作权); 5.        创意; 6.        核心技术人员; 7.        粘性较高的粉丝或客户群。 对于初创团队来说,大多数只有一个创意、一个专利或一个技术产品,如何将自己已有的资源作价,与投资方或者合作方分享,从而获得其他资源的支持,是创业者资源管理的第一步。 在具备相应的资源后,将自己的资源转化为商品或服务,并将其推向市场,在市场化的运作过程中,保证已有资源快速升值,这是第二步。 当资源足够多时,配置的资源,让资源保持本组织的优势或投入到升值最快的产品或服务中,这时资源管理的第三步,此时的创业者应该已经是一定程度上的“成功者”了。 此外: 我在博客上逛的时候看到有些创业者是从事医疗相关行业的创业的,我想说的是这个行业是国家监管很严格的行业,而且顾客对于产品的可靠性要求远高于对价格的要求,所以这个行业价格战或者说通过免费的形式获取顾客会是一条很难走的路。 我的博客是:“http://blog.sina.com.cn/u/5599046475”,欢迎大家关注。 ------------------------- 一次失败的尝试 最初在做微质量管理研究时,我的想法主要是通过自己的研究和有兴趣的创业者的反馈形成正反馈的闭环,通过交流和反馈不断修正最初的想法和思路,达到寻找真相或普世规律的目的。 但是实际操作过程中没有有实际内容的反馈,于是我尝试了另一种方式:向一些可能有创业者反馈信息的组织提出了合作的意向。希望能通过这种方式,获得更多的历史数据和信息帮助我梳理分析思路或通过数据分类佐证我的猜想。 很可惜!这个尝试也失败了。 其实我还可以找其他组织做更多的尝试,但我放弃了,因为我没有那么多精力去做这么做。 现在我准备更换研究的思路:只是自己梳理思路。 研究过程可能也更加随性一些,更加自我一些,希望大家体谅。 对我研究内容感兴趣的朋友,可以自由取用,但只是观点,不是最终的结论! 以后的信息就不在论坛发布吸引大家的注意了,更多的是在自己博客上梳理自己的思路。
menmen 2019-12-02 02:34:02 0 浏览量 回答数 0

问题

剖析短视频分发过程中的用户体验优化技术点

深圳云栖大会已经圆满落幕,在3月29日飞天技术汇-弹性计算、网络和CDN专场中,阿里云CDN高级技术专家周哲为我们带来了《海量短视频极速分发》的主题分享,带领我们从视频内容采集、上传、存储和分发的角...
樰篱 2019-12-01 21:50:09 2644 浏览量 回答数 0

回答

【丁宁-清华大学-阿里达摩院自然语言技术实习体验】 作者简介:丁宁,清华大学计算机科学与技术系2年级博士生,研究方向为自然语言处理、信息抽取、语言表示学习等,在ACL、EMNLP、AAAI、IJCAI等发表多篇文章,作为研究型实习生在阿里达摩院实习半年+。 实习体会 很幸运能来到阿里巴巴进行实习!组里的氛围特别好,同事和师兄师姐都非常专业、友善、亲切。无论是科研上还是工作生活上的任 何问题,都能得到慷慨的帮助。在这里,我认识了一批学术和生活上的榜样(我的主管每天都吃健康餐,而我牛肉汤泡饼),结交了志同道合的朋友(排队喝牛肉汤回来写论文的日子),见识到了IT同学的认真负责(远程帮我调试打印机,周末修电脑),见过了马云老师,也亲身经历了一次双十一奋战。阿里的科研积淀和文化氛围都让我感到收获颇丰,感谢阿里巴巴提供研究型实习生这一高水平项目,也期待更多的同学可以加入研究型实习生的大家庭。 科研心得& 工作宣传 今年在阿里巴巴所做的跨领域分词工作被ACL 2020高分接收,其中meta review说“well-written, well-motivated with strong results, sure accept”。其实这句话可以很好地总结评判科研论文好坏的标准,实际上或许现阶段的科研也并没有什么秘密,动机明确、方法得当、实验充分,就可以形成一篇不错的科研论文。当然了,如果想做出让领域内眼前一亮的工作,可能就需要一些灵光一闪了。 具体到我们的工作上来,跨领域任务往往面临目标领域精标注数据缺失的问题,具体到分词任务上来说,这种数据缺失往往会导致OOV和词的分布差异问题。本文通过弱监督启发式算法来进行远程标注,并引入对抗学习来进行降噪。本文的实验中以newswire (新闻语料)作为源领域,在5个不同的目标领域数据上都取得了较好的效果。 这个工作或许有助于我们真正的往跨领域的两个通用问题上去设计了相关的解决办法。论文名字:《Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation》,具体可以查看达摩院的官方宣传~:ACL 2020有哪些值得关注的论文? - 阿里巴巴达摩院的回答 - 知乎https://www.zhihu.com/question/385259014/answer/1190808208 另外,也宣传一下作为co-author的另一篇ACL 2020论文,是实习生同事周洁(上海交大研究生)的工作,瞄准多层级文本分类任务,设计层级敏感编码器将多层结构作为有向图建模,并且实现了一个串行和并行的版本,论文名字:Hierarchy-Aware Global Model for Hierarchical Text Classification。 还有另一个实习生同事张浩宇(国防科大博士生)在IJCAI 2020的工作,使用noisy learning的方法去进行远程监督entity typing降噪,方法非常优雅,论文名字:Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling。 【杜志浩-哈尔滨工业大学-我在达摩院作实习研究僧的那些事儿】 经韩老师介绍,2019年7月,有幸进入阿里巴巴达摩院成为一名实习研究僧。如今也已半年有余,期间发生的事情仍然历历在目。从初出茅庐的不安,到积极融入的快乐,再到宠辱不惊的泰然,一路走来收获良多! 初出茅庐 其实,刚到达摩院语音算法组时,我的内心充满了不安。这种不安来自于初出茅庐的不自信,不知自己能否胜任这份工作,为公司带来效益。同时,也来自于环境转变的不适应,换了一个全新的环境,对公司内的工作方式、待人接物都不甚了解。 但是,在算法组师兄师姐的帮助下,我的这些不安很快就烟消云散了。为了能够使我尽快熟悉工作内容、了解工作方式,雷鸣师兄坚持每周四晚上为实习生开组会,拉着仕良哥、智颖等很多小伙伴一起讨论算法思路和实验中遇到的问题。我想他们应该都挺忙的吧,但还是牺牲自己休息的时间来参加组会。 刚来的那段时间,除了“雷老师,xxx麻烦审批通过一下”以外,我说的最多的恐怕就是“xx姐/哥,xxx在哪”。由于对很多事情都不了解,比如服务器怎么申请啊,oss怎么弄啊,我总是要麻烦逍北姐、遥仙哥等目之所及的小伙伴。他们一边在忙自己的工作一边还不厌其烦的告诉我,为我提供了莫大的帮助。 积极融入 在算法组这段时间,让我印象最为深刻的一句话就是“我们做事情都很直接,有什么问题,就带着方案提出来”。以前,总是被教育和鼓励发现问题,在阿里,找到问题只是完成了第一步,还需要再提出一个切实可行的解决方案。期间发生的一段小插曲让我现在依然记忆犹新。  为了准备910,语音测试组的小伙伴每天都在紧张的进行测试。其中一项是对语音实时转录及翻译软件的稳定性测试。由于已经进入应用阶段,不能在直接将数据送入到模型中,需要将语音播放出来,再由软件录音进行测试。播放的内容是马老师的演讲,对于坐在旁边的小伙伴来说既是一件好事,也是一件坏事。由于马老师的演讲实在太引人入胜了,每次他们进行测试时,我们都无法专心工作,最终只能……。 咳咳,我心想,这么下去也不是事儿啊,梦想要有,生活也得继续啊,得想想办法解决一下这个问题。我尝试了各种办法,但似乎都无法绕过功放这个问题。最终功夫不负有心人,找到了一款虚拟声卡的软件,能够将一个应用程序的音频输出直接作为另一个应用程序的输入。在熟悉过这个软件的使用方式后,我找到测试组的组长,向他提出了我现在的处境和解决方案。他告诉我,他也知道这样会打扰到周边的人,但是之前也没有太好的办法,感谢我提出的解决方案。 虽然这只是实习期间的一段小插曲,但是我依然印象深刻。通过这件事,我践行了带着方案提问题,这一阿里人所特有的工作方式,让我感觉自己正在逐渐融入到这个集体当中。 宠辱不惊 经过几个月“死去”又“活来”的做实验、写论文,我跟雷鸣师兄合作的语音增强相关工作投稿到了ICASSP 2020。这是语音信号处理领域的顶级会议,在来阿里之前,我也投稿过一次,但不幸被拒。为了准备这篇文章,雷鸣师兄跟我保持着很高互动,了解实验进度,适时的进行指导。此外,还有仕良哥帮助我进行语音畸变的评估。 2020年1月25日这一天,是我国的传统节日,春节,同时也是ICASSP出结果的日子。在得知结果前,我的内心非常忐忑。但当得知接收的喜讯时,我反而没有想象中那么兴奋,没有想象中那么高兴。我的第一反应是看看审稿人的意见,看看我专家们对我文章的看法,还有哪些不足和需要改进的地方。 我想宠辱不惊的心态应该是我在阿里的一个重要收获吧,不以物喜不以己悲。尽力做好自己该做的事儿,结果自然水到渠成。 再说两句 在阿里的这段实习使我受益匪浅。这里有乐于助人、善解人意的师兄师姐,也有认真负责、要求严格的主管Leader;有弹性自由的工作时间,也有肝到深夜的满腔热情;有最新最热的研究成果,也有成熟稳定的应用软件。这里不像实验室的象牙塔,关注技术的同时,也更关注技术如何落地、如何应用到生活中去,最终如何造福亿万用户。 韩鹏-KAUST-青春没有我之阿里巴巴天猫精灵争夺赛被迫写的研究心得 竞选宣言: 在阿里实习摸了几个月的鱼,最开心的就是又吃到了祖国的美食,虽然杭州的食物实在是太清淡了,但总比我在沙特每天吃水煮青菜不放盐要好很多。在阿里的这几个月,让我看淡了很多,发现生命里比较重要的就是长在自己脑袋上的头发,不能太年轻就失去他们。女网红我是感觉自己这辈子没机会了,毕竟流量明星也不是靠推荐算法能捧红的,也就希望能够得到这次500块钱的天猫精灵,请大家pick我。 研究心得: 多抱大腿 为了凑足300字的内心情感白描: 这个世界实在是太无聊了,尤其疫情导致的只能居家办公,我已经憋得快精神失常了,虽然平时也不是那么正常。希望这个世界早日恢复原来的美好,我还打算去越南胡志明市的日式KTV感受一下女仆装呢,希望疫情不会让这些服务业倒闭呢吧。 居然还不够300字,感觉生命浪费在写文字上要比大保健上还是好一些的,希望这些文字能够启发你,虽然我感觉也并没有什么意义,而人活着的意义又是什么呢? 【韩镕罄-南加州大学- 阿里研究型实习生体验】 简介: 经过两年研究时间,找到了学校的教职,也找到了老婆,感谢阿里~ 2018年八月来阿里做研究型实习生,本人在南加州大学商学院读Operations Management 的Ph.D. 块两年时间做了几篇 field experiment paper, 感觉阿里有太多好玩有趣的商业问题可以讨论直接研究。 通过和阿里的合作顺利找到UIUC 伊利诺伊大学香槟分校的常任轨教职。 更神奇的是,在实习期间,随便刷个阿里妹儿的相亲帖, 加个微信 聊一聊 发现和自己一天生日。 就是你了!现在已经结婚快半年! 三十而立,一切静好,感谢阿里! 【马腾-清华大学- 阿里巴巴RI项目心得】 我与阿里之缘 在2019年的夏天,后来成为我主管的文侑来到清华进行交流,当时的我刚刚完成了一个学术项目的研究,正在寻求于之后的研究方向。恰好在交流会上碰见了文侑,经过一番交流之后吗,了解到操作系统团队是阿里 RDMA 技术的先行者和推广者,这正是我计划之后想要研究的方向,于是便一拍即合。由于我之前所研究的领域刚好符合是阿里目前正在做的一些项目,所以文侑提供了一个可以在阿里实习的机会。 在通过了多轮面试之后,我终于成功的入职了操作系统内核组作为学术型实习生。从2018年九月初入职至今,将近两年的时间,我也逐渐地适应了在阿里的生活,松弛有度而又充满欢乐。在这里我也结识了许多要好的朋友,并且,通过公司组织的各种聚会和团建的活动,让我解释了许多有着共同语言爱好的伙伴,大家给与了我这个新人很多的帮助和照顾,使我也渐渐地融入了这个有爱的团队。 在阿里的学术成果 在阿里实习期间,在同事们的帮助下,我顺利地完成了两个与我所在实验室合作的学术项目,并且这两个项目也幸运的产出了两篇高质量的论文,分别发表在了不同领域的高水平会议当中。 其中,第一篇论文发表在第21届Cluster会议,与2019年在美国阿尔伯克基召开。Cluster 是高性能计算方向计算机系统领域的主要会议,这个工作提出并实现了统一高效的 RDMA 消息中间件,解决了 RDMA 在实际生产过程中的一些关键可靠性和可用性问题,例如:极简的接口抽象,必要的上层消息确认机制,中间件辅助流控配合 DCQCN,结合生产系统的诊断机制等等,目前该技术已经被广泛应用在阿里巴巴基础云产品中(包括:数据库,分布式存储等)。另外一个工作则发表在了第25届 ASPLOS会议。ASPLOS 是操作系统,体系结构和编程语言三个方向综合的计算机系统领域顶级会议。这篇论文是和我所在的清华高性能所合作完成的,文章中第一次提出了利用RDMA将数据中心的NVM做disaggregation, 实现了高效的框架,同时证明了这种新架构的可行性。 在阿里的感想 阿里巴巴操作系统团队是一直致力于建立和完善系统领域工业界和学术界的纽带,并且在持续实践工业界和学术界之间的问题分享和工作互动,他们希望通过这些分析和互动能够更好地促进中国在世界计算机系统领域的整体发展和创新。作为操作系统团队中的一员,我深切了解到了先进技术对于企业发展的重要性,在实习的过程中,同我所在的实验室进行合作,我更是深深感受到只有通过学术与工业相辅相成,才能够真正让企业发展先进技术。另外一方面,经过一段时间的实习,我对所在的操作系统团队和阿里技术部门的工作有了更深入的了解,我对自己也有了进一步的规划,计划在毕业之后能够入职阿里,通过我的努力,继续在追逐技术之路上奋斗着。 【亓家鑫-新加坡南洋理工大学- 阿里云实习心得】 非常荣幸我们的研究工作*《Two causal principles for improving visual dialog》*获得了同行的认可,并收录在CVPR 2020会议中。在此要特别感谢我的教授,MReaL实验室成员以及阿里城市大脑实验室师兄师姐一直以来的支持和帮助。比起论文本身的内容,我更希望跟大家分享一年来做研究的心得和感悟,虽然目前我仍然是一个萌新,不过我希望通过萌新的角度能带给大家一些研究上的启发。 开始一个研究之前,选择方向很重要。当然,每一个方向都有自己的优缺点,比如新的方向“容易”发文章,可能将其他领域原有的方法引入加一些调整就可以达到比较高的结果。不过如果没有坚实的创新,在同行评议时,可能会受到质疑。一旦没有通过,再转投时可能发现已经落后于其他人。“老“的方向可能会感觉灌水困难,不过因为我没有真正做过经典的方向,所以不太好发表评论。根据观察,在一堆全面而又坚实的研究中找到创新点,对萌新来说确实困难,不过一旦有所突破,肯定会对这个社区产生广泛的影响。作为一个萌新,可能不会自己选择方向或者领域,所以接受导师或者主管的安排成了唯一的选择,不过要相信自己的导师和主管,因为大家都是在帮助你,而且他们经验丰富。只有当自己走完一套研究的流程,并且真正找到自己感兴趣或者觉得可以有所突破的方向,那可能才是真正属于自己的研究的开始。 当选定了方向,开始做研究的时候,清楚的了解所有有关的方法是非常重要的,因为这样可以防止你的idea被存在的方法“抄袭“。其实对一个比较成熟的研究方向来说,简单思考得到的idea一般都会被提出过。不过研究完所有存在方法后,要跳出这些方法,因为阅读他们的方法可能不是来借鉴,更多的是防止撞车,想要真正有创新,在别人的方法上改动往往是不够的,这就要求我们重新审视这个任务甚至数据集的每一个样本。当然目前即使是学术界toy的数据集也有动辄几十万的数据量,看完是不可能的,不过根据自己的思路统计一些数据特征,有时候对研究会产生很大的帮助。当觉得自己已经掌握了这个数据集或者这个任务的时候,应该是跑一些baseline来练习了。 我作为萌新,没有从零开始写,而是找了一个现成的模型开始修改,这样难度会减少很多,不过毕竟是别人的代码,还是有很多不舒服的地方,所以等自己成熟了的时候,有空的时候,一定要从头写一遍。当然我也不知道什么时候有空。当我开始修改baseline的时候,此次的研究旅行就算是上路了,在接受导师的指引的同时也可以自己不断的尝试自己的想法,因为不知道什么是有用的。我作为萌新刚开始的感受是我觉得可能我想的都有用,那一定要去试一下,所以我也建议大家多试一下,说不定真的有用呢,反正电费不花自己的。当一个东西有用的时候,就可以来思考他为什么有用了,当你想好它为什么有用并且通过了广泛的测试,就到了跟大家分享成果的时候。 当然,一个有用的idea背后可能有无数个没用的idea,至于他们为什么没用,我觉得如果实在是有兴趣,可以研究一下,但是有时候会花大量的时间。举一个实际的例子,我在去年做visual dialog比赛,大概四月份就发现了一个有用的方法,之后也顺利的拿到了第一并且在此基础上进行探究和扩展发表了自己的成果。不过同时,当时有一个效果降低的操作一直困扰着我,直到六个月以后,当然这六个月中还做了其他的事情,我才发现了它真正的原因,并且最终变成了我文章中的一句话。举这个例子的目的是,研究没有效果的idea会对研究有所帮助,不过可能会收益较低。 研究成果的发表是一个很重要的过程,它可以给领域内的同行以启发,甚至可以影响本领域之外的人,所以有时候高度总结自己的思想是一件有用的事情。比如我所做的工作我认为进行高度总结之后可以得到一个启发是:对多模态任务来说不一定所有模态都是平等的,对模型来说所存在模态也不一定是影响结果的全部。除了对自己motivation的总结,应用细节以及结果展示也是非常重要的,因为我是萌新,怎样写出一篇文章的经验肯定是不足的,所以在此不再赘述。在发表完文章之后,“售后服务“也是非常重要的一点,这也是我的教授教我的很重要的理念。因为发表的内容不是刊登出来就结束了,而是你对社区贡献的开始,之后做研究可能会发现更好的实现,或者当时的理论没有讲清楚完善,这些都可以补充到自己的代码中,让大家更好的了解你的思路和工作,或许以后还能收获好评。 此外,实验室的成员就是自己研究道路上的引导者和伙伴,会对自己的研究产生各种各样至关重要的影响,大多时候大家都不会吝惜跟你讨论分享自己的观点,有时还会亲自帮助你解决问题,所以要记得经常参加团建和小集体聚会。不过也不能太依赖别人,每当遇到问题的时候,特别是技术性的问题,还是依靠自己解决的好,毕竟未来总会离开实验室,离开乐于帮助你的人。最后,保护好自己的头发,还是要早睡早起,调不出来的bug熬夜也调不出来,不work的idea可能真的不work,没有人保证炼出来的一定是金子,不要过分影响正常的作息,毕竟这不是百米赛跑,也不能算是马拉松,而是长久的起码好几年以上要坚持的事业。不过我作为萌新才刚刚起步,依然没有体会到最艰难的时刻,不过做好心理准备还是应该的,该来的总是会来的。最后的最后希望这些浅显的经验总结能够给大家带来一点儿帮助,谢谢大家的阅读。 【田冰川-南京大学- 在阿里网络团队实习两年是一种怎样的体验?】 简介: 大家好!我是田冰川,南京大学2016级直博生,导师为田臣老师,研究方向为计算机网络。2018年6月,我以研究型实习生的身份入职阿里巴巴基础设施事业部网络研究团队,实习期间主要从事网络验证相关的研究工作,即通过形式化方法与灰度测试,来降低网络变更中的潜在风险。 2018年既是网络研究团队刚刚组建的一年,也是研究型实习生在阿里刚刚起步的一年。这年春天,经我导师田臣老师介绍,我参加了研究型实习生面试,加入了网络研究团队。 来到团队后,我参加的第一个研究项目是“金睛”,用以保障复杂ACL变更的正确性。ACL即访问控制列表,网络中的ACL决定着流量的连通性。网络架构演化有时会伴随着对ACL的迁移,如何保证迁移前后网络连通性是等价的,是困扰架构与运营部门的一大难题,而金睛项目则是为该问题而生。项目落地以来,金睛系统多次在骨干网ACL迁移中对变更方案进行了验证,并逐渐扩展至对边缘网络的验证。相关论文发表于SIGCOMM 2019主会,我在会场进行了20余分钟的演讲,与我们团队的另一篇文章HPCC共同成为阿里集团在网络领域top1学术会议主会中的首次亮相。 时间总是过的很快。转眼间,我来阿里已经两年了,自金睛之后,又陆续参与了多个研究课题。在阿里的时间越久,就越能切身体会到学术界研究与工业界研究的不同。在阿里实习以来,我接触到的所有研究课题,都不是凭空“想”出来的空中楼阁,更不是靠别人论文“启发”出来的二手课题,而是源自于真实业务的现阶段瓶颈与下一阶段发展趋势——这一点是高校科研很难做到的。 这两年间,我对科研这件事的心态也发生了进一步的变化。2017年,来到阿里之前,我的论文达到了学校博士毕业的最低要求,相当于没有了毕业之忧,对科研的心态从“先拿到博士学位再说”,变成了“想要做出点什么,不想让自己的博士5年就这么水过去”;在来到阿里,接触到工业界的前沿课题之后,我对科研的心态再一次发生了转变,变成“因为认可一件事的价值,所以想要去做好”——这已经成为一种内在的驱动力,让我在认真工作的同时,享受研究带来的乐趣。 如果一切顺利的话,我将于2021年6月博士毕业。能在阿里巴巴度过专属实习生的“三年醇”,想必也是人生中的一大成就了! 【吴秉哲-北京大学- 吴师傅的博士研究课题:大数据时代的数据隐私研究方向初探】 加上本科的时间,不知不觉已经在燕园里面呆了八年了,明年不出意外应该就会离开学校去业界工作。准备最近以文章的形式梳理一下博士几年的研究以及生活的心路历程。由于内容比较分散,所以决定分为几个不同的部分。这次推送封面图片是16年骑行到加乌拉山口遥看喜马拉雅山脉的图片,而我在阿里的花名是风远,意为远处的风。希望多年之后,还有一颗少年的心,投入每天永不变。这次借着阿里内部一个活动的机会,写了今天的这篇稿子,为大家介绍一下我的thesis topic。 已经在蚂蚁实习了一年了,一年时光匆匆而过,而在蚂蚁金服度过的这段时光带给了我很多研究以及生活中的体验,这一年里学到的经验也将伴随着我之后的研究之路。 我本科四年是在数院度过,在研究生阶段决定转换方向到计算机系。博士的前两年一直在跌跌撞撞地寻找自己的研究方向,尝试过很多方向均以失败告终。终于在第三年的时候,误打误撞开始研究起机器学习的隐私保护问题并找到了很多灵感,开始沉淀了一些基本的研究工作。有一天我从一个朋友那里听到了她关于金服这边隐私保护机器学习的团队介绍,当时我就决定要到业界的前沿去看一看隐私保护的真实业界需求。在此之前,我已经在谷歌,IBM等公司有过多段实习的经历,但是在蚂蚁这一次实习经历,是与我自己研究方向最接近,也是时间最长的一次。借着这次约稿的机会,以此文简单总结一下自己过去两年在这一方向的研究。 隐私保护与共享学习 目前随着各种机器学习算法在集团的业务落地,许多隐私泄露与数据滥用的风险相继而来。 尤其是在蚂蚁金服这样一个拥有很多支付数据的企业,数据安全以及隐私保护的重要性更是不言而喻。站在商业合作的角度,如何实现不同公司或者部门之间的数据共享学习也是我所在的团队现在攻坚的一个问题。在这样一个研究背景下,我来到了蚂蚁金服的共享智能团队,开始和师兄师姐们从不同的维度对上述问题展开了深入的研究。 共享学习这样一个概念听起来很美好,但是实际落地起来却困难重重,需要考虑到上层软件算法的设计以及底层系统和硬件的优化,才有可能真正在实际的业务中兼顾效率和隐私保护强度。共享智能团队在这一方向上有着得天独厚的优势。一是领先的业务场景,在国际同行好多还停留在学术研究阶段时,我们团队已经和国内多家银行有了合作。另一个则是技术沉淀的领先。因为金服自身业务的特殊性,我们团队很早就开始了隐私保护机器学习和共享学习的布局,包括很多原始的技术沉淀,强大的工程团队以及学术预研团队。这些积累也使得我们能够很快地摸清最新的一些研究成果并能将其吸入到我们自己的系统当中。 我自己关于隐私保护机器学习的研究主要是围绕着三个层面展开,分别是理论,算法设计,以及系统和硬件优化。在理论层面,我主要针对现有的各种机器学习算法,建立相应的隐私泄露分析框架,比如我们在之前的工作中,针对一种常用的贝叶斯学习的算法根据雷尼差分隐私建立了隐私泄露的定量分析框架,我们进一步使用我们的框架和已有的一些泛化误差上界做了联系,从而能从多个角度去解释该算法的隐私泄露原因。在算法设计层面,我们针对各种已有的新兴算法以及场景,比如图神经网络,推荐系统建立了相应的共享学习算法,并利用我们的理论框架,对这些算法的隐私保护强度做了定量的评估。除开上层的理论和算法设计,底层的系统和硬件的优化同样是非常重要的一环。 在我们团队,我们主打基于硬件可信执行环境 (TEE)的机器学习serving系统,我针对我们当前这套服务系统,结合神经网络计算的一些特点,定制了该系统的一系列优化措施大大提升了整个系统的吞吐量。我也将其中一些措施注册了专利,并在前几天得到了内部的专利授权。除开上述介绍的学术研究方面的成果,我也参与了IEEE共享学习标准的制定会议,这也使得我从标准制定者的角度去更深地思考如何使用技术在未来社会中实现隐私与效率的兼顾。 总之,我自己很感谢能成为共享智能团队的一员,我在这里学到的最宝贵的经验就是详细地从上到下了解了这样一个大团队的合作与分工,学习他们是如何一步步从最初的需求分析,算法设计,到最后真正的业务落地。也很高兴和各位共享智能的同事度过自己博士生涯中很重要的一年。也非常感谢我的博士导师对我研究的无条件支持。回看博士这一路的艰辛,也是感慨万千。有点像自己之前高原骑行的经历,经历了爬到坡顶的缺氧与无力,终在转角处遇见了骑行途中最美的雪山风光。
游客bnlxddh3fwntw 2020-05-19 16:05:51 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT